|
|
Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam |
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠) |
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of 20 kW in power focused into a pot of 40 μ in waist radius, ND3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24° with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.
|
Received: 06 January 2018
Revised: 01 February 2018
Accepted manuscript online:
|
PACS:
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
37.10.Pq
|
(Trapping of molecules)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11504112,91536218,and 11604100). |
Corresponding Authors:
Lianzhong Deng
E-mail: lzdeng@phy.ecnu.edu.cn
|
Cite this article:
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠) Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam 2018 Chin. Phys. B 27 053701
|
[14] |
Hou S Y, Li S Q, Deng L Z and Yin J P 2013 J. Phys. B:At. Mol. Opt. Phys. 46 045301
|
[1] |
Bodermann B, Klug M, Knöckel H, Tiemann E, Trebst T and Telle H R 1998 Appl. Phys. B 67 95
|
[15] |
Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
|
[2] |
Foreman S M, Marian A, Ye J, Petrukhin E A, Gubin M A, Mücke O D, Wong F N C, Ippen E P and Kärtner F X 2005 Opt. Lett. 30 570
|
[16] |
Hogan S D, Wiederkehr A W, Schmutz H and Merkt F 2008 Phys. Rev. Lett. 101 143001
|
[3] |
Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A and Meijer G 2004 Eur. Phys. J. D 31 337
|
[17] |
Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Evem U and Raizen M G 2008 Phys. Rev. Lett. 100 093003
|
[4] |
Burnett K, Julienne P S, Lett P D, Tiesinga E and Williams C J 2002 Nature 416 225
|
[18] |
Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. A 77 051401
|
[5] |
Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203
|
[19] |
Wiederkehr A W, Schmutz H and Merkt F 2012 Mol. Phys. 110 1807
|
[6] |
Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
|
[20] |
Motsch M, Jansen P, Agner J A, Schmutz H and Merkt F 2014 Phys. Rev. A 89 043420
|
[7] |
Bethlem H L, Crompvoets F M H, Jongma R T, Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
|
[21] |
Friedrich B 2000 Phys. Rev. A 61 025403
|
[8] |
Bochinski J R, Hudson E R, Lewandowski H J, Meijer G and Ye J 2003 Phys. Rev. Lett. 91 243001
|
[22] |
Barker P F and Shneider M N 2001 Phys. Rev. A 64 033408
|
[9] |
Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G and Hinds E A 2004 Phys. Rev. Lett. 92 173002
|
[23] |
Dong G J, Lu W and Barker P F 2004 Phys. Rev. A 69 013409
|
[10] |
Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
|
[24] |
Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004
|
[11] |
Jung S, Tiemann E and Lisdat C 2006 Phys. Rev. A 74 040701
|
[25] |
Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Nat. Phys. 2 465
|
[12] |
Meek S A, Bethlem H L, Conrad H and Meijer G 2008 Phys. Rev. Lett. 100 153003
|
[13] |
Quintero-Pérez M, Jansen P, Wall T E, Berg J E, Hoekstra S and Bethlem H L 2013 Phys. Rev. Lett. 110 133003
|
[26] |
Yin Y L, Zhou Q, Deng L Z, Xia Y and Yin J P 2009 Opt. Express 17 10706
|
[14] |
Hou S Y, Li S Q, Deng L Z and Yin J P 2013 J. Phys. B:At. Mol. Opt. Phys. 46 045301
|
[27] |
Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett. 29 053701
|
[15] |
Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
|
[28] |
Deng L Z, Hou S Y and Yin J P 2017 Phys. Rev. A 95 033409
|
[29] |
http://www.ipgphotonics.com/group/view/8/Lasers%
|
[16] |
Hogan S D, Wiederkehr A W, Schmutz H and Merkt F 2008 Phys. Rev. Lett. 101 143001
|
[30] |
Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, Roij A J A and Meijer G 2000 Nature 406 491
|
[17] |
Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Evem U and Raizen M G 2008 Phys. Rev. Lett. 100 093003
|
[31] |
Li S Q 2016 Chin. Phys. B 25 113702
|
[18] |
Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. A 77 051401
|
[32] |
Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174
|
[19] |
Wiederkehr A W, Schmutz H and Merkt F 2012 Mol. Phys. 110 1807
|
[20] |
Motsch M, Jansen P, Agner J A, Schmutz H and Merkt F 2014 Phys. Rev. A 89 043420
|
[33] |
Heiner C E, Bethlem H L and Meijer G 2009 Chem. Phys. Lett. 2 069
|
[21] |
Friedrich B 2000 Phys. Rev. A 61 025403
|
[34] |
Zieger P C, Eyles C J, Meerakker S Y T, Roij A J A, Bethlem H L and Meijer G 2013 Z. Phys. Chem. 227 1605
|
[22] |
Barker P F and Shneider M N 2001 Phys. Rev. A 64 033408
|
[23] |
Dong G J, Lu W and Barker P F 2004 Phys. Rev. A 69 013409
|
[24] |
Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004
|
[25] |
Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Nat. Phys. 2 465
|
[26] |
Yin Y L, Zhou Q, Deng L Z, Xia Y and Yin J P 2009 Opt. Express 17 10706
|
[27] |
Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett. 29 053701
|
[28] |
Deng L Z, Hou S Y and Yin J P 2017 Phys. Rev. A 95 033409
|
[29] |
http://www.ipgphotonics.com/group/view/8/Lasers%
|
[30] |
Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, Roij A J A and Meijer G 2000 Nature 406 491
|
[31] |
Li S Q 2016 Chin. Phys. B 25 113702
|
[32] |
Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174
|
[33] |
Heiner C E, Bethlem H L and Meijer G 2009 Chem. Phys. Lett. 2 069
|
[34] |
Zieger P C, Eyles C J, Meerakker S Y T, Roij A J A, Bethlem H L and Meijer G 2013 Z. Phys. Chem. 227 1605
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|