Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 053701    DOI: 10.1088/1674-1056/27/5/053701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam

Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  Cold molecules have great scientific significance in high-resolution spectroscopy, precision measurement of physical constants, cold collision, and cold chemistry. Supersonic expansion is a conventional and versatile method to produce cold molecules with high kinetic energies. We theoretically show here that fast-moving molecules from supersonic expansion can be effectively decelerated to any desired velocity with a rotating laser beam. The orbiting focus spot of the red-detuned laser serves as a two-dimensional potential well for the molecules. We analyze the dynamics of the molecules inside the decelerating potential well and investigate the dependence of their phase acceptance by the potential well on the tilting angle of the laser beam. ND3 molecules are used in the test of the scheme and their trajectories under the impact of the decelerating potential well are numerically simulated using the Monte Carlo method. For instance, with a laser beam of 20 kW in power focused into a pot of 40 μ in waist radius, ND3 molecules of 250 m/s can be brought to a standstill by the decelerating potential well within a time interval of about 0.73 ms. The total angle covered by the rotating laser beam is about 5.24° with the distance travelled by the potential well being about 9.13 cm. In fact, the molecules can be decelerated to any desired velocity depending on the parameters adopted. This scheme is simple in structure and easy to be realized in experiment. In addition, it is applicable to decelerating both molecules and atoms.
Keywords:  cold molecules      optical potential      Stark deceleration  
Received:  06 January 2018      Revised:  01 February 2018      Accepted manuscript online: 
PACS:  37.10.Mn (Slowing and cooling of molecules)  
  37.10.Pq (Trapping of molecules)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11504112,91536218,and 11604100).
Corresponding Authors:  Lianzhong Deng     E-mail:  lzdeng@phy.ecnu.edu.cn

Cite this article: 

Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠) Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam 2018 Chin. Phys. B 27 053701

[14] Hou S Y, Li S Q, Deng L Z and Yin J P 2013 J. Phys. B:At. Mol. Opt. Phys. 46 045301
[1] Bodermann B, Klug M, Knöckel H, Tiemann E, Trebst T and Telle H R 1998 Appl. Phys. B 67 95
[15] Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
[2] Foreman S M, Marian A, Ye J, Petrukhin E A, Gubin M A, Mücke O D, Wong F N C, Ippen E P and Kärtner F X 2005 Opt. Lett. 30 570
[16] Hogan S D, Wiederkehr A W, Schmutz H and Merkt F 2008 Phys. Rev. Lett. 101 143001
[3] Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A and Meijer G 2004 Eur. Phys. J. D 31 337
[17] Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Evem U and Raizen M G 2008 Phys. Rev. Lett. 100 093003
[4] Burnett K, Julienne P S, Lett P D, Tiesinga E and Williams C J 2002 Nature 416 225
[18] Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. A 77 051401
[5] Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203
[19] Wiederkehr A W, Schmutz H and Merkt F 2012 Mol. Phys. 110 1807
[6] Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
[20] Motsch M, Jansen P, Agner J A, Schmutz H and Merkt F 2014 Phys. Rev. A 89 043420
[7] Bethlem H L, Crompvoets F M H, Jongma R T, Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
[21] Friedrich B 2000 Phys. Rev. A 61 025403
[8] Bochinski J R, Hudson E R, Lewandowski H J, Meijer G and Ye J 2003 Phys. Rev. Lett. 91 243001
[22] Barker P F and Shneider M N 2001 Phys. Rev. A 64 033408
[9] Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G and Hinds E A 2004 Phys. Rev. Lett. 92 173002
[23] Dong G J, Lu W and Barker P F 2004 Phys. Rev. A 69 013409
[10] Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
[24] Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004
[11] Jung S, Tiemann E and Lisdat C 2006 Phys. Rev. A 74 040701
[25] Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Nat. Phys. 2 465
[12] Meek S A, Bethlem H L, Conrad H and Meijer G 2008 Phys. Rev. Lett. 100 153003
[13] Quintero-Pérez M, Jansen P, Wall T E, Berg J E, Hoekstra S and Bethlem H L 2013 Phys. Rev. Lett. 110 133003
[26] Yin Y L, Zhou Q, Deng L Z, Xia Y and Yin J P 2009 Opt. Express 17 10706
[14] Hou S Y, Li S Q, Deng L Z and Yin J P 2013 J. Phys. B:At. Mol. Opt. Phys. 46 045301
[27] Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett. 29 053701
[15] Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
[28] Deng L Z, Hou S Y and Yin J P 2017 Phys. Rev. A 95 033409
[29] http://www.ipgphotonics.com/group/view/8/Lasers%
[16] Hogan S D, Wiederkehr A W, Schmutz H and Merkt F 2008 Phys. Rev. Lett. 101 143001
[30] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, Roij A J A and Meijer G 2000 Nature 406 491
[17] Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Evem U and Raizen M G 2008 Phys. Rev. Lett. 100 093003
[31] Li S Q 2016 Chin. Phys. B 25 113702
[18] Narevicius E, Libson A, Parthey C G, Chavez I, Narevicius J, Even U and Raizen M G 2008 Phys. Rev. A 77 051401
[32] Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174
[19] Wiederkehr A W, Schmutz H and Merkt F 2012 Mol. Phys. 110 1807
[20] Motsch M, Jansen P, Agner J A, Schmutz H and Merkt F 2014 Phys. Rev. A 89 043420
[33] Heiner C E, Bethlem H L and Meijer G 2009 Chem. Phys. Lett. 2 069
[21] Friedrich B 2000 Phys. Rev. A 61 025403
[34] Zieger P C, Eyles C J, Meerakker S Y T, Roij A J A, Bethlem H L and Meijer G 2013 Z. Phys. Chem. 227 1605
[22] Barker P F and Shneider M N 2001 Phys. Rev. A 64 033408
[23] Dong G J, Lu W and Barker P F 2004 Phys. Rev. A 69 013409
[24] Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004
[25] Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Nat. Phys. 2 465
[26] Yin Y L, Zhou Q, Deng L Z, Xia Y and Yin J P 2009 Opt. Express 17 10706
[27] Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett. 29 053701
[28] Deng L Z, Hou S Y and Yin J P 2017 Phys. Rev. A 95 033409
[29] http://www.ipgphotonics.com/group/view/8/Lasers%
[30] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, Roij A J A and Meijer G 2000 Nature 406 491
[31] Li S Q 2016 Chin. Phys. B 25 113702
[32] Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174
[33] Heiner C E, Bethlem H L and Meijer G 2009 Chem. Phys. Lett. 2 069
[34] Zieger P C, Eyles C J, Meerakker S Y T, Roij A J A, Bethlem H L and Meijer G 2013 Z. Phys. Chem. 227 1605
[1] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[2] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[3] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[4] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
[5] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[6] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[7] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[8] High-resolution photoassociation spectroscopy of ultracold Cs2 long-range 0g- state:The external well potential depth
Liu Wen-Liang (刘文良), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(1): 013301.
[9] High resolution photoassociation spectra of an ultracold Cs2 long-range 0u+ (6S1/2+6P1/2) state
Chen Peng (陈鹏), Li Yu-Qing (李玉清), Zhang Yi-Chi (张一驰), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2013, 22(9): 093301.
[10] Suppressing the weakly bound states in the photoassociation dynamics by a frequency cut-off laser pulse
Lin Feng(林峰), Zhang Wei(张为), Zhao Ze-Yu(赵泽宇), and Cong Shu-Lin(丛书林) . Chin. Phys. B, 2012, 21(7): 073203.
[11] Cold cesium molecules produced directly in a magneto–optical trap
Zhang Hong-Shan(张洪山), Ji Zhong-Hua(姬中华), Yuan Jin-Peng(元晋鹏), Zhao Yan-Ting(赵延霆), Ma Jie(马杰), Wang Li-Rong(汪丽蓉), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂) . Chin. Phys. B, 2011, 20(12): 123702.
[12] Elastic scattering of electrons from water molecule
Liu Jun-Bo(刘俊伯) and Zhou Ya-Jun(周雅君). Chin. Phys. B, 2010, 19(9): 093403.
[13] Propagation properties of electromagnetic fields in elliptic dielectric hollow fibres and their applications
Li Hui-Rong(李会容) and Yin Jian-Ping(印建平). Chin. Phys. B, 2010, 19(8): 083204.
[14] Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam
Yin Ya-Ling(尹亚玲), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2008, 17(10): 3672-3677.
[15] Total cross sections for electron scattering at 10-5000eV by polyatomic molecules CF4, CF3H, C2F4, C2F6, and C2H3F3
Sun Jin-Feng (孙金锋), Xu Bin (徐斌), Liu Yu-Fang (刘玉芳), Shi De-Heng (施德恒). Chin. Phys. B, 2005, 14(6): 1125-1129.
No Suggested Reading articles found!