|
|
Using the HgxMg(1-x) Te ternary compound as a room temperature photodetector: The electronic structure, charge transport, and response function of the energetic electromagnetic radiation |
Ghasemi Hasan, Mokhtari Ali |
Department of Physics, Faculty of Sciences, Shahrekord University, P. O. Box 115, Shahrekord, Iran |
|
|
Abstract In the present work, firstly, a first-principles study of the structural, electronic, and electron transport properties of the Hgx Mg(1-x) Te (HMT) ternary compound is performed using the ABINIT package and the results are compared with Cd0.9Zn0.1 Te (CZT) as a current room-temperature photodetector. Next, the response functions of Hg0.6Mg0.4 Te and Cd0.9Zn0.1 Te under electromagnetic irradiation with 0.05 MeV, 0.2 MeV, 0.661 MeV and 1.33 MeV energies are simulated by using the MCNP code. According to these simulations, the Hg0.6Mg0.4 Te ternary compound is suggested as a good semiconductor photodetector for use at room temperature.
|
Received: 08 November 2017
Revised: 16 January 2018
Accepted manuscript online:
|
PACS:
|
31.15.E
|
(Density-functional theory)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
29.40.-n
|
(Radiation detectors)
|
|
29.30.Kv
|
(X- and γ-ray spectroscopy)
|
|
Corresponding Authors:
Ghasemi Hasan
E-mail: nifa2616@gmail.com
|
Cite this article:
Ghasemi Hasan, Mokhtari Ali Using the HgxMg(1-x) Te ternary compound as a room temperature photodetector: The electronic structure, charge transport, and response function of the energetic electromagnetic radiation 2018 Chin. Phys. B 27 053101
|
[13] |
Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghose Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Range T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G and Zwanziger J W 2009 Comput. Phys. Commun 180 2582
|
[1] |
Schlesingera T E, Toneyb J E, Yoonc H, Leed E Y, Brunettd B A, Franksd L and Jamesd R B 2001 Mater. Sci. Eng. 32 103
|
[14] |
https://mcnp.lanl.gov/
|
[2] |
Owens A and Peacock A 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 531 18
|
[15] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
|
[3] |
Kim J J 2012 Characterization of HgCdTe and Related Materials and Substrates for Third Generation Infrared Detectors (PhD Thesis:Arizona State University) p. 1
|
[16] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[4] |
Rogalski A 1989 Quantum Electronics 13 299
|
[17] |
Troullier W and Martins J L 1991 Phys. Rev. B 43 1993
|
[5] |
Svane A, Christensen N E, Cardona M, Chantis A N, Schilfgaarde M and Kotani T 2011 Phy. Rev. B 84 205205
|
[18] |
Perdew J, Burke K and Ernzerho M 1996 Phys. Rev. Lett. 77 3865
|
[6] |
Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Heidelberg:Springer) p. 61
|
[19] |
Hartwigsen C, Goedeckerand S and Hutter J 1998 Phys. Rev. B 58 3641
|
[7] |
Aldachi S 2009 Properties of Group-IV Ⅲ-V and Ⅱ-VI Semiconductors (New York:John Wiley & Sons)
|
[20] |
Poon H C, Feng Z C, Feng Y P and Li M F J 1995 Phys. Condens. Matter 7 2783
|
[8] |
Gokoglu G, Durandurada Mand Gulseren O Comput. Mater. Sci. 4 7593
|
[21] |
Bechiri A, Benmakhlouf F and Bouarissa N 2009 Phys. Procedia 2 803
|
[9] |
Imad K, Fazie S, Iftikhar A and Zahid A 2015 J. Phys. Chem. Solids 83 75
|
[22] |
Dargam T G, Capaz R B and Koiller B 1997 Braz. J. Phys. 27 4
|
[10] |
Paesler K, Kiinig B, Truchsess M, Pfeuffer-Jeschke A, Oehling S, Becker C R and Batke E 1998 J. Cryst. Growth 184/185 1209
|
[23] |
Mokhtari A 2007 J. Phys.:Condens. Matter 19 436213
|
[11] |
Mnasri S, Abdi-Ben Nasrallah S, Sfina N, Bouarissa N and Said M 2009 Semicond. Sci. Technol 24 095008
|
[24] |
Tiwari S 1992 Compound Semiconductor Device Physics (New York:Academic Press) p. 7
|
[12] |
Shi C, Tu Q, Fan H and Li S 2016 J. Micromech. Mol. Phys. 1 1650005
|
[25] |
Jena D 2004 Charge Transport in Semiconductors EE 698D Advanced Semiconductor Physics (University of Notre Dame)
|
[13] |
Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghose Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Range T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G and Zwanziger J W 2009 Comput. Phys. Commun 180 2582
|
[26] |
Jacoboni C 2010 Theory of Electron Transport a Pathway from Elementary Physics to Nonequilibrium Green Functions (New York:Springer) p. 127
|
[14] |
https://mcnp.lanl.gov/
|
[27] |
Feng J, Xiao B, Chen J, Dua Y, Yua J and Zhou R 2011 Mater. Des. 32 3231
|
[15] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
|
[28] |
Kittel C 2005 Introduction to Solid State Physics (New York:John Willey & Sons) p. 185
|
[16] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[17] |
Troullier W and Martins J L 1991 Phys. Rev. B 43 1993
|
[18] |
Perdew J, Burke K and Ernzerho M 1996 Phys. Rev. Lett. 77 3865
|
[19] |
Hartwigsen C, Goedeckerand S and Hutter J 1998 Phys. Rev. B 58 3641
|
[20] |
Poon H C, Feng Z C, Feng Y P and Li M F J 1995 Phys. Condens. Matter 7 2783
|
[21] |
Bechiri A, Benmakhlouf F and Bouarissa N 2009 Phys. Procedia 2 803
|
[22] |
Dargam T G, Capaz R B and Koiller B 1997 Braz. J. Phys. 27 4
|
[23] |
Mokhtari A 2007 J. Phys.:Condens. Matter 19 436213
|
[24] |
Tiwari S 1992 Compound Semiconductor Device Physics (New York:Academic Press) p. 7
|
[25] |
Jena D 2004 Charge Transport in Semiconductors EE 698D Advanced Semiconductor Physics (University of Notre Dame)
|
[26] |
Jacoboni C 2010 Theory of Electron Transport a Pathway from Elementary Physics to Nonequilibrium Green Functions (New York:Springer) p. 127
|
[27] |
Feng J, Xiao B, Chen J, Dua Y, Yua J and Zhou R 2011 Mater. Des. 32 3231
|
[28] |
Kittel C 2005 Introduction to Solid State Physics (New York:John Willey & Sons) p. 185
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|