Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050201    DOI: 10.1088/1674-1056/27/5/050201
GENERAL   Next  

Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method

Hui Pan(潘辉)1,2, Feng Jia(贾峰)3, Zhen-Yu Liu(刘震宇)1, Maxim Zaitsev3, Juergen Hennig3, Jan G Korvink4
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Deptartment of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany;
4 Institute of Microstructure Technology, Karlsruhe Institute of Technology(KIT), Karlsruhe 76344, Germany
Abstract  A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy. Unlike the popular stream function method, the proposed method has design variables that are the distribution of conductive material. A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging (MRI) gradient coils, thus avoiding introducing a coil-winding pattern and simplifying the coil configuration. The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach. The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface. Numerical design results show that the proposed method can provide a new coil layout in a compact design space.
Keywords:  topology optimization method      gradient coils      solid isotropic material with penalization      magnetic resonance imaging  
Received:  30 December 2017      Revised:  08 February 2018      Accepted manuscript online: 
PACS:  02.60.Pn (Numerical optimization)  
  87.61.-c (Magnetic resonance imaging)  
  83.85.Fg (NMR/magnetic resonance imaging)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51675506 and 51275504) and the German Research Foundation (DFG)(Grant Nos.#ZA 422/5-1 and#ZA 422/6-1).
Corresponding Authors:  Feng Jia, Zhen-Yu Liu     E-mail:  feng.jia@uniklinik-freiburg.de;liuzy@ciomp.ac.cn

Cite this article: 

Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method 2018 Chin. Phys. B 27 050201

[13] Bai Y, Wang Q, Yu Y and Kim K 2004 IEEE T. Appl. Supercon. 14 1317
[1] Mansfield P and Grannell P K 1975 Phys. Rev. 12 3618
[14] Hu G, Ni Z and Wang Q 2012 IEEE T. Appl. Supercon. 22 4900604
[2] Badilita V, Kratt K, Baxan N, Mohmmadzadeh M, Burger T, Weber H, Elverfeldt D V, Hennig J, Korvink J G and Wallrabe U 2010 Lab. Chip 10 1387
[15] Tomasi D 2001 Magn. Reson. Med. 45 505
[3] Peck T L, Magin R L and Lauterbur P C 1995 J. Magn. Reson. B 108 114
[16] Poole M and Bowtell R 2007 Concepts Magn. Reson. B-Magn. Reson. Eng. 31B 162
[4] McFarland E W and Mortara A 1992 Magn. Reson. Imaging 10 279
[17] Hu Y, Wang Q L, Li Y, Zhu X C and Niu C Q 2016 Acta Phys. Sin. 65 218301(in Chinese)
[5] Rogers J A, Jackman R J, Whitesides G M, Olson D L and Sweedler J V 1997 Appl. Phys. Lett. 70 2464
[18] Wang L, Cao Y H, Jia F and Liu Z Y 2014 Acta Phys. Sin. 63 238301(in Chinese)
[6] Kratt K, Badilita V, Burger T, Mohr J, Börner M, Korvink J G and Wallrabe U 2009 Sensors Actuat. APhys. 156 328
[19] Turner R 1988 J. Phys. E-Sci. Instrum. 21 948
[7] Dohi T and Murashige K 2016 Micromachines 7 67
[20] Zhu M H, Xia L, Liu F, Zhu J F, Kang L Y and Crozier S 2012 IEEE T. Biomed. Eng. 59 2412
[8] Turner R 1993 Magn. Reson. Imaging 11 903
[21] Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore:John Wiley & Sons) pp. 39-142
[9] Wong E C, Jesmanowicz A and Hyde J S 1991 Magn. Reson. Med. 21 39
[22] Chronik B A and Rutt B K 1998 Magn. Reson. Med. 39 270
[10] Crozier S, Forbes L and Doddrell D 1994 J. Magn. Reson. A 107 126
[23] Chen Y P and Zhu G P 2002 Wuhan Univ. J. Nat. Sci. 7 302
[11] Turner R 1986 J. Phys. D-Appl. Phys. 19 L147
[24] Pissanetzky S 1992 Meas. Sci. Technol. 3 667
[12] Liu W T, Zu D L and Tang X 2010 Chin. Phys. B 19 018701
[25] Liu H Y and Truwit C L 1998 IEEE T. Med. Imaging 17 826
[13] Bai Y, Wang Q, Yu Y and Kim K 2004 IEEE T. Appl. Supercon. 14 1317
[26] Pan H, Wang L, Wang Q L, Chen L M, Jia F and Liu Z Y 2017 Acta Phys. Sin. 66 098301(in Chinese)
[14] Hu G, Ni Z and Wang Q 2012 IEEE T. Appl. Supercon. 22 4900604
[27] Liu Z Y, Jia F, Hennig J and Korvink J G 2012 IEEE T. Magn. 48 1179
[15] Tomasi D 2001 Magn. Reson. Med. 45 505
[28] Sanchez C C, Pantoja M F, Poole M and Bretones A R 2012 IEEE T. Magn. 48 1967
[16] Poole M and Bowtell R 2007 Concepts Magn. Reson. B-Magn. Reson. Eng. 31B 162
[29] Wang L Q and Wang W M 2014 Chin. Phys. B 23 028703
[17] Hu Y, Wang Q L, Li Y, Zhu X C and Niu C Q 2016 Acta Phys. Sin. 65 218301(in Chinese)
[30] Alsop D C and Connick T J 1996 Magn. Reson. Med. 35 875
[18] Wang L, Cao Y H, Jia F and Liu Z Y 2014 Acta Phys. Sin. 63 238301(in Chinese)
[31] Jia F, Littin S, Layton K J, Kroboth S, Yu H J and Zaitsev M 2017 J. Magn. Reson. 281 217
[19] Turner R 1988 J. Phys. E-Sci. Instrum. 21 948
[32] While P T, Forbes L K and Crozier S 2009 IEEE T. Biomed. Eng. 56 1169
[20] Zhu M H, Xia L, Liu F, Zhu J F, Kang L Y and Crozier S 2012 IEEE T. Biomed. Eng. 59 2412
[33] Jia F, Liu Z Y, Zaitsev M, Hennig J and Korvink J G 2014 Struct. Multidisc. Optim. 49 523
[21] Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore:John Wiley & Sons) pp. 39-142
[34] Sigmund O and Maute K 2013 Struct. Multidisc. Optim. 48 1031
[22] Chronik B A and Rutt B K 1998 Magn. Reson. Med. 39 270
[35] Sigmund O 2001 Struct. Multidisc. Optim. 21 120
[23] Chen Y P and Zhu G P 2002 Wuhan Univ. J. Nat. Sci. 7 302
[36] Zhou M, Shyy Y K and Thomas H L 2001 Struct. Multidisc. Optim. 21 152
[24] Pissanetzky S 1992 Meas. Sci. Technol. 3 667
[37] Gao T, Zhang W H, Zhu J H, Xu Y J and Bassir D H 2008 Finite Elem. Anal. Des. 44 805
[25] Liu H Y and Truwit C L 1998 IEEE T. Med. Imaging 17 826
[38] Deng Y B, Liu Z Y, Zhang P, Liu Y S and Wu Y H 2011 J. Comput. Phys. 230 6688
[26] Pan H, Wang L, Wang Q L, Chen L M, Jia F and Liu Z Y 2017 Acta Phys. Sin. 66 098301(in Chinese)
[39] Sigmund O 2001 Comput. Method. Appl. M. 190 6605
[27] Liu Z Y, Jia F, Hennig J and Korvink J G 2012 IEEE T. Magn. 48 1179
[40] Sigmund O 2001 Comput. Method. Appl. M. 190 6577
[28] Sanchez C C, Pantoja M F, Poole M and Bretones A R 2012 IEEE T. Magn. 48 1967
[41] Bendsoe M P 1989 Structural Optimization 1 193
[29] Wang L Q and Wang W M 2014 Chin. Phys. B 23 028703
[42] Zhou M and Rozvany G I N 1991 Comput. Method. Appl. M. 89 309
[30] Alsop D C and Connick T J 1996 Magn. Reson. Med. 35 875
[43] Soares C A M 1987 Computer Aided Optimal Design:Structural and Mechanical Systems (Heidelberg:Springer) pp. 271-311
[31] Jia F, Littin S, Layton K J, Kroboth S, Yu H J and Zaitsev M 2017 J. Magn. Reson. 281 217
[44] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
[32] While P T, Forbes L K and Crozier S 2009 IEEE T. Biomed. Eng. 56 1169
[33] Jia F, Liu Z Y, Zaitsev M, Hennig J and Korvink J G 2014 Struct. Multidisc. Optim. 49 523
[34] Sigmund O and Maute K 2013 Struct. Multidisc. Optim. 48 1031
[35] Sigmund O 2001 Struct. Multidisc. Optim. 21 120
[36] Zhou M, Shyy Y K and Thomas H L 2001 Struct. Multidisc. Optim. 21 152
[37] Gao T, Zhang W H, Zhu J H, Xu Y J and Bassir D H 2008 Finite Elem. Anal. Des. 44 805
[38] Deng Y B, Liu Z Y, Zhang P, Liu Y S and Wu Y H 2011 J. Comput. Phys. 230 6688
[39] Sigmund O 2001 Comput. Method. Appl. M. 190 6605
[40] Sigmund O 2001 Comput. Method. Appl. M. 190 6577
[41] Bendsoe M P 1989 Structural Optimization 1 193
[42] Zhou M and Rozvany G I N 1991 Comput. Method. Appl. M. 89 309
[43] Soares C A M 1987 Computer Aided Optimal Design:Structural and Mechanical Systems (Heidelberg:Springer) pp. 271-311
[44] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
[1] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[2] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[3] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[4] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[5] Self-assembled superparamagnetic nanoparticles as MRI contrast agents–A review
Su Hong-Ying (苏红莹), Wu Chang-Qiang (吴昌强), Li Dan-Yang (李丹阳), Ai Hua (艾华). Chin. Phys. B, 2015, 24(12): 127506.
[6] Linear-fitting-based similarity coefficient map for tissue dissimilarity analysis in T2*-w magnetic resonance imaging
Yu Shao-De (余绍德), Wu Shi-Bin (伍世宾), Wang Hao-Yu (王浩宇), Wei Xin-Hua (魏新华), Chen Xin (陈鑫), Pan Wan-Long (潘万龙), Hu Jiani, Xie Yao-Qin (谢耀钦). Chin. Phys. B, 2015, 24(12): 128711.
[7] Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique
Li Jing (李敬), Cai Cong-Bo (蔡聪波), Chen Lin (陈林), Chen Ying (陈颖), Qu Xiao-Bo (屈小波), Cai Shu-Hui (蔡淑惠). Chin. Phys. B, 2015, 24(10): 108703.
[8] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[9] Formation of multifunctional Fe3O4/Au composite nanoparticles for dual-mode MR/CT imaging applications
Hu Yong (胡勇), Li Jing-Chao (李静超), Shen Ming-Wu (沈明武), Shi Xiang-Yang (史向阳). Chin. Phys. B, 2014, 23(7): 078704.
[10] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
[11] Parallel variable-density spiral imaging using nonlocal total variation reconstruction
Fang Sheng (方晟), Guo Hua (郭华). Chin. Phys. B, 2014, 23(5): 057401.
[12] Multifunctional magnetic nanoparticles for magnetic resonance image-guided photothermal therapy for cancer
Yue Xiu-Li (岳秀丽), Ma Fang (马放), Dai Zhi-Fei (戴志飞). Chin. Phys. B, 2014, 23(4): 044301.
[13] Multi-objective optimization of gradient coil for benchtop magnetic resonance imaging system with high-resolution
Wang Long-Qing (王龙庆), Wang Wei-Min (王为民). Chin. Phys. B, 2014, 23(2): 028703.
[14] Magnetic nanoparticle-based cancer therapy
Yu Jing (余靓), Huang Dong-Yan (黄冬雁), Muhammad Zubair Yousaf, Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2013, 22(2): 027506.
[15] Designing shielded radio-frequency phased-array coils for magnetic resonance imaging
Xu Wen-Long (徐文龙), Zhang Ju-Cheng (张鞠成), Li Xia (李霞), Xu Bing-Qiao (徐冰俏), Tao Gui-Sheng (陶贵生). Chin. Phys. B, 2013, 22(1): 010203.
No Suggested Reading articles found!