|
|
Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method |
Hui Pan(潘辉)1,2, Feng Jia(贾峰)3, Zhen-Yu Liu(刘震宇)1, Maxim Zaitsev3, Juergen Hennig3, Jan G Korvink4 |
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Deptartment of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; 4 Institute of Microstructure Technology, Karlsruhe Institute of Technology(KIT), Karlsruhe 76344, Germany |
|
|
Abstract A topology optimization method based on the solid isotropic material with penalization interpolation scheme is utilized for designing gradient coils for use in magnetic resonance microscopy. Unlike the popular stream function method, the proposed method has design variables that are the distribution of conductive material. A voltage-driven transverse gradient coil is proposed to be used as micro-scale magnetic resonance imaging (MRI) gradient coils, thus avoiding introducing a coil-winding pattern and simplifying the coil configuration. The proposed method avoids post-processing errors that occur when the continuous current density is approximated by discrete wires in the stream function approach. The feasibility and accuracy of the method are verified through designing the z-gradient and y-gradient coils on a cylindrical surface. Numerical design results show that the proposed method can provide a new coil layout in a compact design space.
|
Received: 30 December 2017
Revised: 08 February 2018
Accepted manuscript online:
|
PACS:
|
02.60.Pn
|
(Numerical optimization)
|
|
87.61.-c
|
(Magnetic resonance imaging)
|
|
83.85.Fg
|
(NMR/magnetic resonance imaging)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51675506 and 51275504) and the German Research Foundation (DFG)(Grant Nos.#ZA 422/5-1 and#ZA 422/6-1). |
Corresponding Authors:
Feng Jia, Zhen-Yu Liu
E-mail: feng.jia@uniklinik-freiburg.de;liuzy@ciomp.ac.cn
|
Cite this article:
Hui Pan(潘辉), Feng Jia(贾峰), Zhen-Yu Liu(刘震宇), Maxim Zaitsev, Juergen Hennig, Jan G Korvink Design of small-scale gradient coils in magnetic resonance imaging by using the topology optimization method 2018 Chin. Phys. B 27 050201
|
[13] |
Bai Y, Wang Q, Yu Y and Kim K 2004 IEEE T. Appl. Supercon. 14 1317
|
[1] |
Mansfield P and Grannell P K 1975 Phys. Rev. 12 3618
|
[14] |
Hu G, Ni Z and Wang Q 2012 IEEE T. Appl. Supercon. 22 4900604
|
[2] |
Badilita V, Kratt K, Baxan N, Mohmmadzadeh M, Burger T, Weber H, Elverfeldt D V, Hennig J, Korvink J G and Wallrabe U 2010 Lab. Chip 10 1387
|
[15] |
Tomasi D 2001 Magn. Reson. Med. 45 505
|
[3] |
Peck T L, Magin R L and Lauterbur P C 1995 J. Magn. Reson. B 108 114
|
[16] |
Poole M and Bowtell R 2007 Concepts Magn. Reson. B-Magn. Reson. Eng. 31B 162
|
[4] |
McFarland E W and Mortara A 1992 Magn. Reson. Imaging 10 279
|
[17] |
Hu Y, Wang Q L, Li Y, Zhu X C and Niu C Q 2016 Acta Phys. Sin. 65 218301(in Chinese)
|
[5] |
Rogers J A, Jackman R J, Whitesides G M, Olson D L and Sweedler J V 1997 Appl. Phys. Lett. 70 2464
|
[18] |
Wang L, Cao Y H, Jia F and Liu Z Y 2014 Acta Phys. Sin. 63 238301(in Chinese)
|
[6] |
Kratt K, Badilita V, Burger T, Mohr J, Börner M, Korvink J G and Wallrabe U 2009 Sensors Actuat. APhys. 156 328
|
[19] |
Turner R 1988 J. Phys. E-Sci. Instrum. 21 948
|
[7] |
Dohi T and Murashige K 2016 Micromachines 7 67
|
[20] |
Zhu M H, Xia L, Liu F, Zhu J F, Kang L Y and Crozier S 2012 IEEE T. Biomed. Eng. 59 2412
|
[8] |
Turner R 1993 Magn. Reson. Imaging 11 903
|
[21] |
Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore:John Wiley & Sons) pp. 39-142
|
[9] |
Wong E C, Jesmanowicz A and Hyde J S 1991 Magn. Reson. Med. 21 39
|
[22] |
Chronik B A and Rutt B K 1998 Magn. Reson. Med. 39 270
|
[10] |
Crozier S, Forbes L and Doddrell D 1994 J. Magn. Reson. A 107 126
|
[23] |
Chen Y P and Zhu G P 2002 Wuhan Univ. J. Nat. Sci. 7 302
|
[11] |
Turner R 1986 J. Phys. D-Appl. Phys. 19 L147
|
[24] |
Pissanetzky S 1992 Meas. Sci. Technol. 3 667
|
[12] |
Liu W T, Zu D L and Tang X 2010 Chin. Phys. B 19 018701
|
[25] |
Liu H Y and Truwit C L 1998 IEEE T. Med. Imaging 17 826
|
[13] |
Bai Y, Wang Q, Yu Y and Kim K 2004 IEEE T. Appl. Supercon. 14 1317
|
[26] |
Pan H, Wang L, Wang Q L, Chen L M, Jia F and Liu Z Y 2017 Acta Phys. Sin. 66 098301(in Chinese)
|
[14] |
Hu G, Ni Z and Wang Q 2012 IEEE T. Appl. Supercon. 22 4900604
|
[27] |
Liu Z Y, Jia F, Hennig J and Korvink J G 2012 IEEE T. Magn. 48 1179
|
[15] |
Tomasi D 2001 Magn. Reson. Med. 45 505
|
[28] |
Sanchez C C, Pantoja M F, Poole M and Bretones A R 2012 IEEE T. Magn. 48 1967
|
[16] |
Poole M and Bowtell R 2007 Concepts Magn. Reson. B-Magn. Reson. Eng. 31B 162
|
[29] |
Wang L Q and Wang W M 2014 Chin. Phys. B 23 028703
|
[17] |
Hu Y, Wang Q L, Li Y, Zhu X C and Niu C Q 2016 Acta Phys. Sin. 65 218301(in Chinese)
|
[30] |
Alsop D C and Connick T J 1996 Magn. Reson. Med. 35 875
|
[18] |
Wang L, Cao Y H, Jia F and Liu Z Y 2014 Acta Phys. Sin. 63 238301(in Chinese)
|
[31] |
Jia F, Littin S, Layton K J, Kroboth S, Yu H J and Zaitsev M 2017 J. Magn. Reson. 281 217
|
[19] |
Turner R 1988 J. Phys. E-Sci. Instrum. 21 948
|
[32] |
While P T, Forbes L K and Crozier S 2009 IEEE T. Biomed. Eng. 56 1169
|
[20] |
Zhu M H, Xia L, Liu F, Zhu J F, Kang L Y and Crozier S 2012 IEEE T. Biomed. Eng. 59 2412
|
[33] |
Jia F, Liu Z Y, Zaitsev M, Hennig J and Korvink J G 2014 Struct. Multidisc. Optim. 49 523
|
[21] |
Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore:John Wiley & Sons) pp. 39-142
|
[34] |
Sigmund O and Maute K 2013 Struct. Multidisc. Optim. 48 1031
|
[22] |
Chronik B A and Rutt B K 1998 Magn. Reson. Med. 39 270
|
[35] |
Sigmund O 2001 Struct. Multidisc. Optim. 21 120
|
[23] |
Chen Y P and Zhu G P 2002 Wuhan Univ. J. Nat. Sci. 7 302
|
[36] |
Zhou M, Shyy Y K and Thomas H L 2001 Struct. Multidisc. Optim. 21 152
|
[24] |
Pissanetzky S 1992 Meas. Sci. Technol. 3 667
|
[37] |
Gao T, Zhang W H, Zhu J H, Xu Y J and Bassir D H 2008 Finite Elem. Anal. Des. 44 805
|
[25] |
Liu H Y and Truwit C L 1998 IEEE T. Med. Imaging 17 826
|
[38] |
Deng Y B, Liu Z Y, Zhang P, Liu Y S and Wu Y H 2011 J. Comput. Phys. 230 6688
|
[26] |
Pan H, Wang L, Wang Q L, Chen L M, Jia F and Liu Z Y 2017 Acta Phys. Sin. 66 098301(in Chinese)
|
[39] |
Sigmund O 2001 Comput. Method. Appl. M. 190 6605
|
[27] |
Liu Z Y, Jia F, Hennig J and Korvink J G 2012 IEEE T. Magn. 48 1179
|
[40] |
Sigmund O 2001 Comput. Method. Appl. M. 190 6577
|
[28] |
Sanchez C C, Pantoja M F, Poole M and Bretones A R 2012 IEEE T. Magn. 48 1967
|
[41] |
Bendsoe M P 1989 Structural Optimization 1 193
|
[29] |
Wang L Q and Wang W M 2014 Chin. Phys. B 23 028703
|
[42] |
Zhou M and Rozvany G I N 1991 Comput. Method. Appl. M. 89 309
|
[30] |
Alsop D C and Connick T J 1996 Magn. Reson. Med. 35 875
|
[43] |
Soares C A M 1987 Computer Aided Optimal Design:Structural and Mechanical Systems (Heidelberg:Springer) pp. 271-311
|
[31] |
Jia F, Littin S, Layton K J, Kroboth S, Yu H J and Zaitsev M 2017 J. Magn. Reson. 281 217
|
[44] |
Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
|
[32] |
While P T, Forbes L K and Crozier S 2009 IEEE T. Biomed. Eng. 56 1169
|
[33] |
Jia F, Liu Z Y, Zaitsev M, Hennig J and Korvink J G 2014 Struct. Multidisc. Optim. 49 523
|
[34] |
Sigmund O and Maute K 2013 Struct. Multidisc. Optim. 48 1031
|
[35] |
Sigmund O 2001 Struct. Multidisc. Optim. 21 120
|
[36] |
Zhou M, Shyy Y K and Thomas H L 2001 Struct. Multidisc. Optim. 21 152
|
[37] |
Gao T, Zhang W H, Zhu J H, Xu Y J and Bassir D H 2008 Finite Elem. Anal. Des. 44 805
|
[38] |
Deng Y B, Liu Z Y, Zhang P, Liu Y S and Wu Y H 2011 J. Comput. Phys. 230 6688
|
[39] |
Sigmund O 2001 Comput. Method. Appl. M. 190 6605
|
[40] |
Sigmund O 2001 Comput. Method. Appl. M. 190 6577
|
[41] |
Bendsoe M P 1989 Structural Optimization 1 193
|
[42] |
Zhou M and Rozvany G I N 1991 Comput. Method. Appl. M. 89 309
|
[43] |
Soares C A M 1987 Computer Aided Optimal Design:Structural and Mechanical Systems (Heidelberg:Springer) pp. 271-311
|
[44] |
Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|