Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047211    DOI: 10.1088/1674-1056/27/4/047211
Special Issue: SPECIAL TOPIC — Recent advances in thermoelectric materials and devices
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy

Chengyan Liu(刘呈燕)1, Lei Miao(苗蕾)1, Xiaoyang Wang(王潇漾)1, Shaohai Wu(伍少海)1, Yanyan Zheng(郑岩岩)1, Ziyang Deng(邓梓阳)1, Yulian Chen(陈玉莲)1, Guiwen Wang(王桂文)2, Xiaoyuan Zhou(周小元)2
1. Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
2. College of Physics, Chongqing University, Chongqing 401331, China
Abstract  Thermoelectric selenides have attracted more and more attentions recently. Herein, p-type SnSe polycrystalline bulk materials with good thermoelectric properties are presented. By using the SnSe2 nanostructures synthesized via a wet-chemistry route as the precursor, polycrystalline SnSe bulk materials were successfully obtained by a combined heat-treating process under reducing atmosphere and following spark plasma sintering procedure. As a reference, the SnSe nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process. The thermoelectric properties of the SnSe polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity, whereas the decrease in Seebeck coefficient is nearly invisible. As a result, the maximum power factor is enhanced from 5.06×10-4 W/m·K2 to 8.08×10-4 W/m·K2 at 612℃. On the other hand, the reference sample, which was obtained by using SnSe nanostructures as the precursor, displays very poor power factor of only 1.30×10-4 W/m·K2 at 537℃. The x-ray diffraction (XRD), scanning electron microscope (SEM), x-ray fluorescence (XRF), and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline SnSe prepared by using SnSe2 precursor. On the other hand, the impact of heat-treating temperature on thermal conductivity is not obvious. Owing to the boosting of power factor, a high zT value of 1.07 at 612℃ is achieved. This study provides a new method to synthesize polycrystalline SnSe and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure.
Keywords:  thermoelectric properties      SnSe2 nanostructures      polycrystalline SnSe      anisotropic crystal growth  
Received:  01 March 2018      Revised:  19 March 2018      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.80.Jc (Other crystalline inorganic semiconductors)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572049, 51562005, and 51772056), the Natural Science Foundation of Guangxi Zhuang Automomous Region, China (Grant Nos. 2015GXNSFFA139002 and 2016GXNSFBA380152), and the Open Fund of Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (Grant No. CRYO201703).
Corresponding Authors:  Lei Miao     E-mail:  miaolei@guet.edu.cn

Cite this article: 

Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元) Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy 2018 Chin. Phys. B 27 047211

[1] Liu W, Jie Q, Kim S H and Ren Z 2015 Acta Mater. 87 357
[2] Alam H and Ramakrishna S 2013 Nano Energy 2 190
[3] Pei Y, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Synder G J 2014 Adv. Energy Mater. 4 1400486
[4] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[5] Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[6] Peng K, Zhang B, Wu H, Cao X, Li A, Yang D, Lu X, Wang G, Han X, Uher C and Zhou X 2017 Mater. Today
[7] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[8] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[9] Zhang X, Liu J, Li Y, Su W B, Li J C, Zhu Y H, Li M K, Wang C M and Wang C L 2015 Chin. Phys. Lett. 32 037201
[10] Wu D, Wu L, He D, Zhao L D, Li W, Wu M, Jin M, Xu J, Jiang J, Huang L, Zhu Y, Kanatzidis M G and He J 2017 Nano Energy 35 321
[11] Cao B L, Jian J K, Ge B H, Li S M, Wang H, Liu J and Zhao H Z 2017 Chin. Phys. B 26 017202
[12] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy Environ. Sci. 2 466
[13] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 034402
[14] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[15] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[16] Kleinke H 2010 Chem. Mater. 22 604
[17] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[18] Li C W, Hong J, May A F, Bansal D, Chi S, Hong T, Ehlers G and Delaire O 2015 Nat. Phys. 11 1063
[19] Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, Wang G and Zhou X 2016 Energy Environ. Sci. 9 454
[20] Fu J, Su X, Xie H, Yan Y, Liu W, You Y, Cheng X, Uher C and Tang X 2018 Nano Energy 44 53
[21] Ge Z H, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski R E, Qin P, Feng J and Zhao L D 2017 J. Am. Chem. Soc. 139 9714
[22] Chere E K, Zhang Q, Dahal K, Cao F, Mao J and Ren Z 2016 J. Mater. Chem. A 4 1848
[23] Zhang Q, Chere E K, Sun J, Cao F, Dahal K, Chen S, Chen G and Ren Z 2015 Adv. Energy Mater. 5 1500360
[24] Chang C, Tan Q, Pei Y, Xiao Y, Zhang X, Chen Y X, Zheng L, Gong S, Li J E, He J and Zhao L D 2016 RSC Adv. 6 98216
[25] Wang X, Xu J, Liu G, Fu Y, Liu Z, Tan X, Shao H, Jiang H, Tan T and Jiang J 2016 Appl. Phys. Lett. 108 083902
[26] Ibrahim D, Vaney J B, Sassi S, Candolfi C, Ohorodniichuk V, Levinsky P, Semprimoschnig C, Dauscher A and Lenoir B 2017 Appl. Phys. Lett. 110 032103
[27] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy Environ. Sci. 9 3044
[28] Zhang B, Peng K, Sha X, Li A, Zhou X, Chen Y, Deng Q, Yang D, Ma E and Han X 2017 Microsc. Microanal. 23 173
[29] Wei P C, Bhattacharya S, He J, Neeleshwar S, Podila R, Chen Y Y and Rao A M 2016 Nature 539 E1
[30] Wei T R, Tan G J, Zhang X, Wu C F, Li J F, Dravid V P, Snyder G J and Kanatzidis M G 2016 J. Am. Chem. Soc. 138 8875
[31] Chen Y X, Ge Z H, Yin M J, Feng D, Huang X Q, Zhao W Y and He J Q 2016 Adv. Funct. Mater. 26 6836
[32] Chattopadhyay T, Pannetier J and Vonschnering H G 1986 J. Phys. Chem. Solids 47 879
[33] Asfandiyar, Li Z L, Sun F H, Pan Y, Wu C F, Farooq M U, Tang H C, Li F, Li B, Li J F and Wei T R 2017 Sci. Rep. 7 43262
[34] Wang X, Xu J, Liu G Q, Tan X, Li D, Shao H, Tan T and Jiang J 2017 NPG Asia Mater. 9 e426
[35] Popuri S R, Pollet M, Decourt R, Morrison F D, Bennett N S and Bos J W G 2016 J. Mater. Chem. C 4 1685
[36] Wei W, Chang C, Yang T, Liu J, Tang H, Zhang J, Li Y, Xu F, Zhang Z, Li J F and Tang G 2018 J. Am. Chem. Soc. 140 499
[37] Dewandre A, Hellman O, Bhattacharya S, Romero A H, Madsen G K H and Verstraete M J 2016 Phys. Rev. Lett. 117 276601
[38] Liu C, Miao L, Hu D, Huang R, Fisher C A J, Tanemura S and Gu H 2013 Phys. Rev. B 88 205201
[39] Saha S, Banik A and Biswas K 2016 Chem. Eur. J. 22 15634
[40] Luo Y, Zheng Y, Luo Z, Hao S, Du C, Liang Q, Li Z, Khor K A, Hipalgaonkar K, Xu J, Yan Q, Wolverton C and Kanatzidis M G 2017 Adv. Energy Mater. 1702167
[41] Xu P, Fu T, Xin J, Liu Y, Ying P, Zhao X, Pan H and Zhu T 2017 Sci. Bull. 62 1663
[42] Li F, Zheng Z, Li Y, Wang W, Li J F, Li B, Zhong A, Luo J and Fan P 2017 J. Mater. Sci. 52 1
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[3] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[4] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[5] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[6] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[7] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[8] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[9] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[10] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[11] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[12] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[13] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[14] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[15] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
No Suggested Reading articles found!