Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037105    DOI: 10.1088/1674-1056/27/3/037105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy

Xue-Lan Hu(胡雪兰)1, Ruo-Xi Zhao(赵若汐)1, Jiang-Ge Deng(邓江革)1, Yan-Min Hu(胡艳敏)1, Qing-Gong Song(宋庆功)2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
2 College of Science, Civil Aviation University of China, Tianjin 300300, China
Abstract  In this paper, we employ the first-principle total energy method to investigate the effect of P impurity on mechanical properties of NiAl grain boundary (GB). According to “energy”, the segregation of P atom in NiAlΣ5 GB reduces the cleavage energy and embrittlement potential, demonstrating that P impurity embrittles NiAlΣ5 GB. The first-principle computational tensile test is conducted to determine the theoretical tensile strength of NiAlΣ5 GB. It is demonstrated that the maximum ideal tensile strength of NiAlΣ5 GB with P atom segregation is 144.5 GPa, which is lower than that of the pure NiAlΣ5 GB (164.7 GPa). It is indicated that the segregation of P weakens the theoretical strength of NiAlΣ5 GB. The analysis of atomic configuration shows that the GB fracture is caused by the interfacial bond breaking. Moreover, P is identified to weaken the interactions between Al-Al bonds and enhance Ni-Ni bonds.
Keywords:  NiAlΣ5 grain boundary      P impurity      first principles      mechanical properties  
Received:  29 October 2017      Revised:  20 December 2017      Accepted manuscript online: 
PACS:  71.20.Lp (Intermetallic compounds)  
  31.15.ae (Electronic structure and bonding characteristics)  
  61.72.S- (Impurities in crystals)  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404396 and 51201181) and the Subject Construction Fund of Civil Aviation University of China (Grant No. 000032041102).
Corresponding Authors:  Xue-Lan Hu     E-mail:  huxlemma@163.com

Cite this article: 

Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功) Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy 2018 Chin. Phys. B 27 037105

[1] Stoloff N S 2009 Microstructure and Properties of Materials, Vol. 1 (Singapore:World Scientific) pp. 51-106
[2] Miracle D B 1993 Acta Metall. Mater. 41 649
[3] Miracle D B and Darolia R 1995 Intermetallic Compounds:Principles and Practice, Vol. 2 (Chichester:Wiley) pp. 53-72
[4] Zhou H B, Jin S, Zhang Y and Lu G H 2011 Sci. China Phys. Mech. Astron. 54 2164
[5] Liu L H, Zhang Y, Hu X L and Lv G H 2009 J. Phys. Condens. Matter 21 015002
[6] Liu C T, White C L and Horton J A 1985 Acta Metall. 33 213
[7] Jayaram R and Miller M K 1993 Appl. Surf. Sci. 67 311
[8] Miller M K, Anderson I M and Russell K F 1996 Appl. Surf. Sci. 94 288
[9] Jayaram R and Miller M K 1995 Scripta Metallurgicaet Materialia 33 119
[10] Zhang G Y, Guo J T and Zhang H 2007 Meter. Eng. 4 43
[11] Sun W R, Guo S R and Lu D Z 1997 Metal. Mater. Trans. 28A 649
[12] Zhou J and Guo J T 2004 Acta Metall. Sin. 40 67 (in Chinese)
[13] Zhang G Y, Guo J T and Zhang H 2007 Meter. Eng. 4 43 (in Chinese)
[14] Hu X L, Zhao R X, Luo Y and Song Q G 2017 Chin. Phys. B 26 023101
[15] Kresse G and Hafner J 1993 Phy. Rev. B 47 558
[16] Kresse G and Furthmuller J 1996 Phy. Rev. B 54 11169
[17] Perdew J P and Wang Y 1992 Phys. Rev. B 46 12947
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] Rice J R and Wang J S 1989 Mater. Sci. Engi. A 107 23
[20] Roundy D and Cohen M L 2001 Phys. Rev. B 64 212103
[21] Ogata S, Li J and Yip S 2002 Science 298 807
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[5] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[6] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[7] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[8] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[9] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[10] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[11] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[12] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[13] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[14] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[15] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
No Suggested Reading articles found!