|
Abstract Beyond graphene, the layered transition metal dichalcogenides (TMDs) have gained considerable attention due to their unique properties. Herein, we review the lattice dynamic and thermal properties of monolayer TMDs, including their phonon dispersion, relaxation time, mean free path (MFP), and thermal conductivities. In particular, the experimental and theoretical studies reveal that the TMDs have relatively low thermal conductivities due to the short phonon group velocity and MFP, which poses a significant challenge for efficient thermal management of TMDs-based devices. Importantly, recent studies have shown that this issue could be largely addressed by connecting TMDs and other materials (such as metal electrode and graphene) with chemical bonds, and a relatively high interfacial thermal conductance (ITC) could be achieved at the covalent bonded interface. The ITC of MoS2/Au interface with chemical edge contact is more than 10 times higher than that with physical side contact. In this article, we review recent advances in the study of TMD-related ITC. The effects of temperature, interfacial vacancy, contact orientation, and phonon modes on the edge-contacted interface are briefly discussed.
|
Received: 30 October 2017
Revised: 26 January 2018
Accepted manuscript online:
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
73.43.-f
|
(Quantum Hall effects)
|
|
Corresponding Authors:
Xiangjun Liu
E-mail: liux@ihpc.a-star.edu.sg
|
Cite this article:
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟) Thermal properties of transition-metal dichalcogenide 2018 Chin. Phys. B 27 034402
|
[1] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[2] |
Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113
|
[3] |
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
|
[4] |
Kang M, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610
|
[5] |
Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
|
[6] |
Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
|
[7] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[8] |
Yu Z, Pan Y, Shen Y, Wang Z, Ong Z-Y, Xu Tm Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y and Wang X 2014 Nat. Commun. 5 5290
|
[9] |
Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
|
[10] |
Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
|
[11] |
Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104
|
[12] |
Kaasbjert K, Thygesen K S and Jacobsen W 2012 Phys. Rev. B 85 115317
|
[13] |
Cai Y, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
|
[14] |
Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D and Park J 2015 Nature 520 656
|
[15] |
Zhang L M, Jiao B B, Yun S C, Kong Y M, Ku C W and Chen D P 2017 Chin. Phys. Lett. 34 025101
|
[16] |
Chi F and Sun L L 2016 Chin, Phys. Lett. 33 117201
|
[17] |
Jin Q X, Liu B, Liu Y, Wang W W, Wang H, Xu Z, Gao D, Wang Q, Xia Y Y, Song Z T and Feng S L 2016 Chin. Phys. Lett. 33 098502
|
[18] |
Ezheiyan M, Sadeghi H and Tavakoli M H 2016 Chin. Phys. Lett. 33 058102
|
[19] |
Hu R, Hu J Y, Wu R K, Xie B, Yu X J and Luo X B 2016 Chin. Phys. Lett. 33 044401
|
[20] |
Nie T and Liu W Q 2012 Acta Phys. Sin. 61 184401 (in Chinese)
|
[21] |
Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese)
|
[22] |
Zhu L D, Sun F Y, Zhu J and Tang D W 2012 Acta Phys. Sin. 61 134402 (in Chinese)
|
[23] |
Zhao X, Zhang W R, Jin D Y, Fu Q, Chen L, Xie H Y and Zhang Y J 2012 Acta Phys. Sin. 61 134401 (in Chinese)
|
[24] |
Sun J and Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese)
|
[25] |
Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
|
[26] |
Fu Q, Zhang W R, Jin D Y, Zhao Y X and Wang X 2016 Chin. Phys. B 25 124401
|
[27] |
Hou Y and Zhu L L 2016 Chin. Phys. B 25 086502
|
[28] |
Lei J M and Peng X Y 2016 Chin. Phys. B 25 020202
|
[29] |
Zhang Y, Xie Z X, Deng Y X, Yu X and Li K M 2015 Chin. Phys. B 24 126302
|
[30] |
Balandin A A 2011 Nat. Mater. 10 569
|
[31] |
Pop E 2010 Nano Res. 3 147
|
[32] |
Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 J. Phys. Chem. C 117 9042
|
[33] |
Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 ACS Nano 8 986
|
[34] |
Taube A, Judek J, Lapińska A and Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061
|
[35] |
Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103
|
[36] |
Cai Y, Lan J, Zhang G and Zhang Y W 2014 Phys. Rev. B 89 035438
|
[37] |
Jiang J W, Zhuang X Y and Rabczuk T 2013 Sci. Rep. 3 2209
|
[38] |
Liu T H, Chen Y C, Pao C W and Chang C C 2014 Appl. Phys. Lett. 104 201909
|
[39] |
Wu X, Yang N and Luo T 2015 Appl. Phys. Lett. 107 191907
|
[40] |
Zhang J, Hong Y, Wang X, Yue Y, Xie D, Jiang J, Xiong Y and Li P 2017 J. Phys. Chem. C 121 10336
|
[41] |
Chen C C, Li Z, Shi L and Cronin S B 2014 Appl. Phys. Lett. 104 081908
|
[42] |
Chen J, Walther J H and Koumoutsakos P 2015 Adv. Funct. Mater. 25 7539
|
[43] |
Liu X, Zhang G and Zhang Y W 2015 Nano Res. 8 2755
|
[44] |
Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 RSC Adv. 6 5767
|
[45] |
Mingo N and Broido D A 2005 Phys. Rev. Lett. 95 096105
|
[46] |
Nika D L, Pokatilov E P, Askerrov A S and Balandin A A 2009 Phys. Rev. B 79 155413
|
[47] |
Pop E, Varshney V and Roy A K 2012 MRS Bulletin 37 1273
|
[48] |
Klemens P G 2000 J. Wide Bandgap Mater. 7 332
|
[49] |
Klemens P G 2001 Int. J. Thermophys. 22 265
|
[50] |
Jeong C, Datta S and Lundstrom M 2011 J. Appl. Phys. 109 073718
|
[51] |
Jo I, Pettes M T, Ou E, Wu W and Shi L 2014 Appl. Phys. Lett. 104 201902
|
[52] |
Gu X and Yang R 2014 Appl. Phys. Lett. 105 131903
|
[53] |
Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
|
[54] |
Su J, Liu Z T, Feng L P and Li N 2015 J. Alloys Compd. 622 777
|
[55] |
Zhang X, Sun D, Li Y, Lee G H, Cui X, Chenet D, You Y, Heinz T F and Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923
|
[56] |
Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Res. 8 1210
|
[57] |
Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
|
[58] |
Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P and Hone J 2015 Nat. Nano 10 534
|
[59] |
Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N O, Huang Y and Duan X 2015 Nano Lett. 15 3030
|
[60] |
Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Wu Y, Chen T, Zhang Y W, Zhang G and Wang X 2016 Adv. Mater. 28 547
|
[61] |
Liu X, Zhang G and Zhang Y W 2016 Nano Res. 9 2372
|
[62] |
Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
|
[63] |
Liu X, Gao J, Zhang G and Zhang Y W 2017 Nano Res. 10 2944
|
[64] |
Ding Z, Pei Q X, Jiang J W, Huang W and Zhang Y W 2016 Carbon 96 888
|
[65] |
Judek J, Gertych A P, Swiniarski M, Lapinska A, Duzynska A and Zdrojet M 2015 Sci. Rep. 5 12422
|
[66] |
Mao R, Kong B D and Kim K W 2014 J. Appl. Phys. 116 034302
|
[67] |
Chen Z, Jang W, Bao W, Lau C N and Dames C 2009 Appl. Phys. Lett. 95 161910
|
[68] |
Liu Y, Ong Z Y, Wu J, Zhao Y, Watanabe K, Taniguchi T, Chi D, Zhang G, Thong J T L, Qiu C W and Hippalgaonkar K 2017 Sci. Rep. 7 43886
|
[69] |
Yuan P, Li C, Xu S, Liu J and Wang X 2017 Acta Materialia 122 152
|
[70] |
Liu W, Kang J, Cao W, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 IEEE International Electron Devices Meeting 499 19.4.1-19.4.4
|
[71] |
Kang J, Liu W, Sarkar D, Jena D and Banerjee K 2014 Phys. Rev. X 4 031005
|
[72] |
Hu L, Desai T and Keblinski P 2011 Phys. Rev. B 83 195423
|
[73] |
Liu X, Zhang G and Zhang Y W 2015 Carbon 94 760
|
[74] |
Liu X, Gao J, Zhang G and Zhang Y W 2017 Adv. Funct. Mater. 27 1702776
|
[75] |
Liu X, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 12541
|
[76] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[77] |
Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P and Ning C 2010 Nat. Mater. 9 555
|
[78] |
Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
|
[79] |
Sadeghi M M, Jo I and Shi L 2013 Proceedings of the National Academy of Sciences of the United States of America 110 16321
|
[80] |
Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484
|
[81] |
Xu W, Zhang G and Li B 2014 J. App. Phys. 116 134303
|
[82] |
Sutter P, Cortes R, Lahiri J and Sutter E 2012 Nano Lett. 12 4869
|
[83] |
Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P and Gu G 2014 Science 343 163
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|