Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 034402    DOI: 10.1088/1674-1056/27/3/034402
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

Thermal properties of transition-metal dichalcogenide

Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟)
Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
Abstract  Beyond graphene, the layered transition metal dichalcogenides (TMDs) have gained considerable attention due to their unique properties. Herein, we review the lattice dynamic and thermal properties of monolayer TMDs, including their phonon dispersion, relaxation time, mean free path (MFP), and thermal conductivities. In particular, the experimental and theoretical studies reveal that the TMDs have relatively low thermal conductivities due to the short phonon group velocity and MFP, which poses a significant challenge for efficient thermal management of TMDs-based devices. Importantly, recent studies have shown that this issue could be largely addressed by connecting TMDs and other materials (such as metal electrode and graphene) with chemical bonds, and a relatively high interfacial thermal conductance (ITC) could be achieved at the covalent bonded interface. The ITC of MoS2/Au interface with chemical edge contact is more than 10 times higher than that with physical side contact. In this article, we review recent advances in the study of TMD-related ITC. The effects of temperature, interfacial vacancy, contact orientation, and phonon modes on the edge-contacted interface are briefly discussed.
Keywords:  transition metal dichalcogenide      MoS2      thermal conductivity      interfacial thermal conductance  
Received:  30 October 2017      Revised:  26 January 2018      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  73.43.-f (Quantum Hall effects)  
Corresponding Authors:  Xiangjun Liu     E-mail:  liux@ihpc.a-star.edu.sg

Cite this article: 

Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟) Thermal properties of transition-metal dichalcogenide 2018 Chin. Phys. B 27 034402

[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[2] Liu X, Zhang G, Pei Q X and Zhang Y W 2013 Appl. Phys. Lett. 103 133113
[3] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[4] Kang M, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610
[5] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[6] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[7] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[8] Yu Z, Pan Y, Shen Y, Wang Z, Ong Z-Y, Xu Tm Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y and Wang X 2014 Nat. Commun. 5 5290
[9] Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 5143
[10] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[11] Qiu H, Pan L, Yao Z, Li J, Shi Y and Wang X 2012 Appl. Phys. Lett. 100 123104
[12] Kaasbjert K, Thygesen K S and Jacobsen W 2012 Phys. Rev. B 85 115317
[13] Cai Y, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[14] Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D and Park J 2015 Nature 520 656
[15] Zhang L M, Jiao B B, Yun S C, Kong Y M, Ku C W and Chen D P 2017 Chin. Phys. Lett. 34 025101
[16] Chi F and Sun L L 2016 Chin, Phys. Lett. 33 117201
[17] Jin Q X, Liu B, Liu Y, Wang W W, Wang H, Xu Z, Gao D, Wang Q, Xia Y Y, Song Z T and Feng S L 2016 Chin. Phys. Lett. 33 098502
[18] Ezheiyan M, Sadeghi H and Tavakoli M H 2016 Chin. Phys. Lett. 33 058102
[19] Hu R, Hu J Y, Wu R K, Xie B, Yu X J and Luo X B 2016 Chin. Phys. Lett. 33 044401
[20] Nie T and Liu W Q 2012 Acta Phys. Sin. 61 184401 (in Chinese)
[21] Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese)
[22] Zhu L D, Sun F Y, Zhu J and Tang D W 2012 Acta Phys. Sin. 61 134402 (in Chinese)
[23] Zhao X, Zhang W R, Jin D Y, Fu Q, Chen L, Xie H Y and Zhang Y J 2012 Acta Phys. Sin. 61 134401 (in Chinese)
[24] Sun J and Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese)
[25] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[26] Fu Q, Zhang W R, Jin D Y, Zhao Y X and Wang X 2016 Chin. Phys. B 25 124401
[27] Hou Y and Zhu L L 2016 Chin. Phys. B 25 086502
[28] Lei J M and Peng X Y 2016 Chin. Phys. B 25 020202
[29] Zhang Y, Xie Z X, Deng Y X, Yu X and Li K M 2015 Chin. Phys. B 24 126302
[30] Balandin A A 2011 Nat. Mater. 10 569
[31] Pop E 2010 Nano Res. 3 147
[32] Sahoo S, Gaur A P S, Ahmadi M, Guinel M J F and Katiyar R S 2013 J. Phys. Chem. C 117 9042
[33] Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Hight Walker A R and Xing H G 2014 ACS Nano 8 986
[34] Taube A, Judek J, Lapińska A and Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061
[35] Li W, Carrete J and Mingo N 2013 Appl. Phys. Lett. 103 253103
[36] Cai Y, Lan J, Zhang G and Zhang Y W 2014 Phys. Rev. B 89 035438
[37] Jiang J W, Zhuang X Y and Rabczuk T 2013 Sci. Rep. 3 2209
[38] Liu T H, Chen Y C, Pao C W and Chang C C 2014 Appl. Phys. Lett. 104 201909
[39] Wu X, Yang N and Luo T 2015 Appl. Phys. Lett. 107 191907
[40] Zhang J, Hong Y, Wang X, Yue Y, Xie D, Jiang J, Xiong Y and Li P 2017 J. Phys. Chem. C 121 10336
[41] Chen C C, Li Z, Shi L and Cronin S B 2014 Appl. Phys. Lett. 104 081908
[42] Chen J, Walther J H and Koumoutsakos P 2015 Adv. Funct. Mater. 25 7539
[43] Liu X, Zhang G and Zhang Y W 2015 Nano Res. 8 2755
[44] Peng B, Zhang H, Shao H, Xu Y, Zhang X and Zhu H 2016 RSC Adv. 6 5767
[45] Mingo N and Broido D A 2005 Phys. Rev. Lett. 95 096105
[46] Nika D L, Pokatilov E P, Askerrov A S and Balandin A A 2009 Phys. Rev. B 79 155413
[47] Pop E, Varshney V and Roy A K 2012 MRS Bulletin 37 1273
[48] Klemens P G 2000 J. Wide Bandgap Mater. 7 332
[49] Klemens P G 2001 Int. J. Thermophys. 22 265
[50] Jeong C, Datta S and Lundstrom M 2011 J. Appl. Phys. 109 073718
[51] Jo I, Pettes M T, Ou E, Wu W and Shi L 2014 Appl. Phys. Lett. 104 201902
[52] Gu X and Yang R 2014 Appl. Phys. Lett. 105 131903
[53] Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
[54] Su J, Liu Z T, Feng L P and Li N 2015 J. Alloys Compd. 622 777
[55] Zhang X, Sun D, Li Y, Lee G H, Cui X, Chenet D, You Y, Heinz T F and Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923
[56] Peimyoo N, Shang J, Yang W, Wang Y, Cong C and Yu T 2015 Nano Res. 8 1210
[57] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[58] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P and Hone J 2015 Nat. Nano 10 534
[59] Liu Y, Wu H, Cheng H C, Yang S, Zhu E, He Q, Ding M, Li D, Guo J, Weiss N O, Huang Y and Duan X 2015 Nano Lett. 15 3030
[60] Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Wu Y, Chen T, Zhang Y W, Zhang G and Wang X 2016 Adv. Mater. 28 547
[61] Liu X, Zhang G and Zhang Y W 2016 Nano Res. 9 2372
[62] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
[63] Liu X, Gao J, Zhang G and Zhang Y W 2017 Nano Res. 10 2944
[64] Ding Z, Pei Q X, Jiang J W, Huang W and Zhang Y W 2016 Carbon 96 888
[65] Judek J, Gertych A P, Swiniarski M, Lapinska A, Duzynska A and Zdrojet M 2015 Sci. Rep. 5 12422
[66] Mao R, Kong B D and Kim K W 2014 J. Appl. Phys. 116 034302
[67] Chen Z, Jang W, Bao W, Lau C N and Dames C 2009 Appl. Phys. Lett. 95 161910
[68] Liu Y, Ong Z Y, Wu J, Zhao Y, Watanabe K, Taniguchi T, Chi D, Zhang G, Thong J T L, Qiu C W and Hippalgaonkar K 2017 Sci. Rep. 7 43886
[69] Yuan P, Li C, Xu S, Liu J and Wang X 2017 Acta Materialia 122 152
[70] Liu W, Kang J, Cao W, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 IEEE International Electron Devices Meeting 499 19.4.1-19.4.4
[71] Kang J, Liu W, Sarkar D, Jena D and Banerjee K 2014 Phys. Rev. X 4 031005
[72] Hu L, Desai T and Keblinski P 2011 Phys. Rev. B 83 195423
[73] Liu X, Zhang G and Zhang Y W 2015 Carbon 94 760
[74] Liu X, Gao J, Zhang G and Zhang Y W 2017 Adv. Funct. Mater. 27 1702776
[75] Liu X, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 12541
[76] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[77] Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P and Ning C 2010 Nat. Mater. 9 555
[78] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213
[79] Sadeghi M M, Jo I and Shi L 2013 Proceedings of the National Academy of Sciences of the United States of America 110 16321
[80] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[81] Xu W, Zhang G and Li B 2014 J. App. Phys. 116 134303
[82] Sutter P, Cortes R, Lahiri J and Sutter E 2012 Nano Lett. 12 4869
[83] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P and Gu G 2014 Science 343 163
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[5] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[6] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[10] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[13] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[14] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[15] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
No Suggested Reading articles found!