Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 036101    DOI: 10.1088/1674-1056/27/3/036101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural phase transition, strength, and texture in vanadium at high pressure under nonhydrostatic compression

Lun Xiong(熊伦)1,2,3, Jing Liu(刘景)3
1 School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China;
2 DaZhou Industrial Technology Institute of Intelligent Manufacturing, Dazhou 635000, China;
3 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  The structural phase transition, strength, and texture of vanadium have been studied under nonhydrostatic compression up to 70 GPa using an angle-dispersive radial x-ray diffraction technique in a 2-fold paranomic diamond anvil cell and up to 38 GPa using an angle-dispersive x-ray diffraction technique in a modified Mao-Bell diamond anvil cell at room temperature. We have confirmed a phase transition from body-centered cubic structure to rhombohedral structure at 27-32 GPa under nonhydrostatic compression. The radial x-ray diffraction data yields a bulk modulus K0=141(5) GPa and its pressure derivative K'0=5.4(7) for the bcc phase and K0=154(13) GPa with K'0=3.8(3) for the rhombohedral phase at ψ=54.7°. The nonhydrostatic x-ray diffraction data of both bcc and rhombohedral phases yields a bulk modulus K0=188(5) GPa with K'0=2.1(3). Combined with the independent constraints on the high-pressure shear modulus, it is found that the vanadium sample can support a differential stress of ~1.6 GPa when it starts to yield with plastic deformation at ~36 GPa. A maximum differential stress as high as ~1.7 GPa can be supported by vanadium at the pressure of ~47 GPa. In addition, we have investigated the texture up to 70 GPa using the software package MAUD. It is convinced that the body-centered cubic to rhombohedral phase transition and plastic deformation due to stress under high pressures are responsible for the development of texture.
Keywords:  phase transition      strength      texture      vanadium  
Received:  29 September 2017      Revised:  23 December 2017      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  62.20.F- (Deformation and plasticity)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  64.30.Ef (Equations of state of pure metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142 and 11079040) the Project of Sichuan University of Arts and Science, China (Grant No. 2017KZ001Z), and the Program of Education Department of Sichuan Province, China (Grant No. 18ZB0506). This work was performed at 4W2 beamline of Beijing Synchrotron Radiation Facility (BSRF), which was supported by Chinese Academy of Sciences (Grant Nos. KJCX2-SWN03 and KJCX2-SW-N20).
Corresponding Authors:  Lun Xiong     E-mail:  1094129778@qq.com

Cite this article: 

Lun Xiong(熊伦), Jing Liu(刘景) Structural phase transition, strength, and texture in vanadium at high pressure under nonhydrostatic compression 2018 Chin. Phys. B 27 036101

[1] Wexler A and Corak W S 1952 Phys. Rev. 85 85
[2] Nirmala L C and Iyakutti K 2003 Phys. Rev. B 67 094509
[3] Suzuki N and Otani M 2002 J. Phys. Condens. Matter 14 10869
[4] Ishizuka M, Iketani M and Endo S 2000 Phys. Rev. B 61 R3823
[5] Takemura K 2000 Proceedings of the International Conference on High Pressure Science and Technology, AIRAPT-17 (Honolulu, July 1999), edited by Manghnani M H, Nellis W J, Nicol M F (University Press, India, 2000), p. 443
[6] Suzuki N and Otani M J 2002 J. Phys.:Condens. Matter 14 10869
[7] Landa A, Klepeis J, Söderlind P, Naumov I, Vitos L and Ruban A 2006 J. Phys.:Condens. Matter 18 5079
[8] Ding Y, Ahuja R, Shu J, Chow P, Luo W and Mao H K 2007 Phys. Rev. Lett. 98 085502
[9] Byeongchan L, Robert E R, Klepeis J E, Söderlind P and Landa A 2007 Phys. Rev. B 75 180101
[10] Luo W, Ahuja R, Ding Y and Mao H K 2007 Proc. Natl. Acad. Sci. USA 104 16428
[11] Koči L, Ma Y, Oganov A R, Souvatzis P and Ahuja R 2008 Phys. Rev. B 77 214101
[12] Qiu S L and Marcus P M 2008 J. Phys.:Condens. Matter 20 275218
[13] Verma A K and Modak P 2008 Eurpphys. Lett. 81 37003
[14] Byeongchan L 2008 Phys. Rev. B 77 134105
[15] Krasinikov O M, Vekilov Y K, Isaev E I and Bondarenko N G 2011 J. Exp. Theor. Phys. 112 240
[16] Bondarenko N G, Vekilov Y K, Isaev E I and Krasilnikov O M 2010 JETP Lett. 91 611
[17] Krasilnikov O M, Vekilov Y K, Mosyagin I Y, Isaev E I and Bondarenko N G 2012 J. Phys.:Condens. Matter 24 195402
[18] Jenei Z, Liermann H P, Cynn H, Klepeis J P, Baer B J and Evans W J 2011 Phys. Rev. B 83 54101
[19] Singh A K 1993 J. Appl. Phys. 73 4278
[20] Singh A K and Balasingh C 1994 J. Appl. Phys. 75 4956
[21] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[22] Liu J 2016 Chin. Phys. B 25 076106
[23] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Häusermann D 1996 High Press. Res. 14 235
[24] Merkel S, Wenk H R, Shu J F, Shen G Y, Gillet P, Mao H K and Hemley R J 2002 J. Geophys. Res. 107 2271
[25] Duffy T S, Elert M, Furnish M D, Chau R, Holmes N and Nguyen J 2007 AIP Con ference Proceedings 135 639
[26] He D W and Duffy T S 2006 Phys. Rev. B 73 134106
[27] Birch F 1978 J. Geophys. Res. 83 1257
[28] Ragan D D, Clarke D R and Schiferl D 1996 Rev. Sci. Instrum. 67 494
[29] Shen Y R, Kumar R S, Pravica M and Nicol M F 2004 Rev. Sci. Instrum. 75 4450
[30] Duffy T S, Shen G Y, Heinz D L, Shu J F, Ma Y Z, Mao H K, Hemley R J and Singh A K 1999 Phys. Rev. B 60 15063
[31] Singh A K, Jain A, Liermann H P and Saxena S K 2006 J. Phys. Chem. Solids 67 2197
[32] Katahara K W, Manghnani M H and Fisher E S 1979 J. Phys. F:Met. Phys. 9 773
[33] Klepeis J H, Cynn H, Evans W J, Rudd R E, Yang L H, Liermann H P and Yang W G 2010 Phys. Rev. B 81 134107
[34] He D W, Shieh S R and Duffy T S 2004 Phys. Rev. B 70 184121
[35] Lutterotti L, Matthies S and Wenk H R 1999 Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 1 1599
[36] Lutterotti L, Matthies S and Wenk H R 1999 IUCr:Newsletter of the CPD 21 14
[37] Rollett A D and Wright S I 2000 (Cambridge:Cambridge University Press) pp. 178-238
[38] Chen B, Lutker K, Raju S V, Yan J Y, Kanitpanyacharoen W, Lei J L, Yang S Z, Wenk H R, Mao H K and Williams Q 2012 Science 338 1448
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!