Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 033101    DOI: 10.1088/1674-1056/27/3/033101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

Nisar Ahmed1, S Mukhtar2, Wei Gao3, Syed Zafar Ilyas2
1 Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan;
2 Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan;
3 Department of Chemical and Materials Engineering, the University of Auckland, Auckland 1142, New Zealand
Abstract  The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5×106 cm-1) of photons in the ultraviolet region.
Keywords:  density functional theory      Zn3(VO4)2      electronic structure      optical properties  
Received:  14 October 2017      Revised:  26 December 2017      Accepted manuscript online: 
PACS:  31.15.ej (Spin-density functionals)  
  31.15.ae (Electronic structure and bonding characteristics)  
  61.50.-f (Structure of bulk crystals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  S Mukhtar     E-mail:  surayya.mukhtar@aiou.edu.pk

Cite this article: 

Nisar Ahmed, S Mukhtar, Wei Gao, Syed Zafar Ilyas Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2 2018 Chin. Phys. B 27 033101

[1] Qureshi N, Zbiri M, Rodríguez-Carvajal J, Stunault A, Ressouche E, Hansen T C, Fernández-Díaz M T, Johnson M R, Fuess H, Ehrenberg H, Sakurai Y, Itou M, Gillon B, Wolf T, Rodríguez-Velamazan J A and Sánchez-Montero J 2009 Phys. Rev. B 79 094417
[2] Luitel H N, Chand R, Torikai T, Yada M and Watari T 2013 International Journal of Photoenergy 2013 9
[3] Nakajima T, Isobe M, Tsuchiya T, Ueda Y and Kumagai T 2009 J. Lumin. 129 1598
[4] Pitale S S, Gohain M, Nagpure I M, Ntwaeaborwa O M, Bezuidenhoudt B C B and Swart H C 2012 Physica B 407 1485
[5] Mondal C, Ganguly M, Sinha A K, Pal J, Sahoo R and Pal T 2013 CrystEngComm 15 6745
[6] Mazloom F, Masjedi-Arani M and Salavati-Niasari M 2016 Journal of Materials Science:Materials in Electronics 27 1974
[7] Hng H H and Knowles K M 1999 J. Eur. Ceram. Soc. 19 721
[8] Gopal R and Calvo C 1971 Can. J. Chem. 49 3056
[9] Ni S, Wang X, Zhou G, Yang F, Wang J and He D 2010 J. Alloys Compd. 491 378
[10] Wang M, Shi Y and Jiang G 2012 Mater. Res. Bull. 47 18
[11] Hoyos D A, Echavarria A and Saldarriaga C 2001 Journal of Materials Science 36 5515
[12] Nakajima T, Tsuchiya T and Manabe T 2010 Appl. Phys. A 98 885
[13] Tingting L, Jiaolian L, Zentaro H, Takeshi F and Norihiko K 2012 Advances in Materials Physics and Chemistry 2012 173
[14] Mukhtar S, Zou C and Gao W 2013 Applied Nanoscience 3 535
[15] Jezierski A, Kaczkowski J, Szymczak R and Szymczak H 2014 Ferroelectrics 461 76
[16] Kumarasiri A and Lawes G 2011 Phys. Rev. B 84 064447
[17] Laverock J, Chen B, Preston A R H, Smith K E, Wilson N R, Balakrishnan G, Glans P A and Guo J H 2013 Phys. Rev. B 87 125133
[18] Szymczak R, Baran M, Diduszko R, Fink-Finowicki J, Gutowska M, Szewczyk A and Szymczak H 2006 Phys. Rev. B 73 094425
[19] Kaczkowski J and Jezierski A 2014 Ferroelectrics 461 92
[20] Wang D, Tang J, Zou Z and Ye J 2005 Chem. Mater. 17 5177
[21] Li P, Zhou W, Wang X, Zhang Y, Umezawa N, Abe H, Ye J and Wang D 2015 APL Materials 3 104405
[22] Vahedeh R and Sholeh A 2017 Chin. Phys. B 26 116501
[23] Gu Y, Xu S and Wu X 2016 Chin. Phys. B 25 123103
[24] Nisar A, Jawad N, Kouser R, Azeem G N, Mukhtar S, Yasir S and Nasim M H 2017 Materials Research Express 4 065903
[25] Babu K E, Murali N, Babu K V, Babu B K and Veeraiah V 2015 Chin. Phys. Lett. 32 016201
[26] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties
[27] Ronde H and Blasse G 1978 J. lnorg. Nucl. Chem. 40 215
[28] Slassi A 2015 Mater. Sci. Semicond. Process. 39 217
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[14] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!