Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 118401    DOI: 10.1088/1674-1056/26/11/118401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Sampled-data modeling and dynamical effect of output-capacitor time-constant for valley voltage-mode controlled ewline buck-boost converter

Shu-Han Zhou(周述晗), Guo-Hua Zhou(周国华), Shao-Huan Zeng(曾绍桓), Min-Rui Leng(冷敏瑞), Shun-Gang Xu(徐顺刚)
Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle of Ministry of Education, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Abstract  

By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance (ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampled-data model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations, and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode (CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.

Keywords:  buck-boost converter      valley voltage-mode control      sampled-data modeling      dynamics  
Received:  30 April 2017      Revised:  24 July 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61371033 and 51407054), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201442), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2682016CX035).

Corresponding Authors:  Guo-Hua Zhou     E-mail:  ghzhou-swjtu@163.com

Cite this article: 

Shu-Han Zhou(周述晗), Guo-Hua Zhou(周国华), Shao-Huan Zeng(曾绍桓), Min-Rui Leng(冷敏瑞), Shun-Gang Xu(徐顺刚) Sampled-data modeling and dynamical effect of output-capacitor time-constant for valley voltage-mode controlled ewline buck-boost converter 2017 Chin. Phys. B 26 118401

[1] Redl R and Sun J 2009 IEEE Trans. Power Electron. 24 2669
[2] Schweitzer B P and Rosenstein A B 1964 IEEE Trans. Aerospace and Electron. Syst. 2 1171
[3] Wang J P, Bao B C, Xu J P, Zhou G H and Wen H 2013 IEEE Trans. Ind. Electron. 60 1759
[4] Zhou G H, Xu J P and Wang J P 2014 IEEE Trans. Ind. Electron. 61 1280
[5] He S Z, Zhou G H, Xu J P, Bao B C and Yang P 2013 Acta Phys. Sin. 62 110503(in Chinese)
[6] He S Z, Zhou G H, Xu J P, Wu S R and Chen L 2014 Acta Phys. Sin. 63 130501(in Chinese)
[7] Zhou G H, He S Z, Chen X and Cui H F 2014 Electron. Lett. 50 627
[8] Shi G D, Zhang H M, Bao B C, Feng F and Dong W 2015 Acta Phys. Sin. 64 010501(in Chinese)
[9] Xie F, Yang R and Zhang B 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 58 2269
[10] Bao B C, Zhou G H, Xu J P and Liu Z 2011 IEEE Trans. Power Electron 26 1968
[11] Deivasundari P S, Uma G and Poovizhi R 2013 IET Power Electron. 6 763
[12] Wang F Q and Ma X K 2013 Chin. Phys. B 22 120504
[13] Zhou Y F, Chen J N, Iu H H C and Tse C K 2008 Int. J. Bifurc. Chaos 18 121
[14] Zhao Y B, Zhang D Y and Zhang C J 2007 Acta Chin. Phys. 16 933
[15] Wang F Q, Zhang H and Ma X K 2012 Chin. Phys. B 21 020505
[16] Zhou G H, Xu J P, Bao B C, Zhang F and Liu X S 2010 Chin. Phys. Lett. 27 090504
[17] Banerjee S, Parui S and Gupta A 2004 IEEE Trans. Circuits Syst. Ⅱ 51 649
[18] He S Z, Zhou G H, Xu J P, Wu S R, Yan T S and Zhang X 2014 Acta Phys. Sin. 63 170503(in Chinese)
[19] Fang C C 2001 IEEE Trans. Power Electron. 16 345
[20] Banerjee S and Chakrabarty K 1998 IEEE Trans. Power Electron. 13 252
[21] Xie F, Yang R and Zhang B 2010 Acta Phys. Sin. 59 8393(in Chinese)
[22] Chen Y F, Tse C K, Qiu S S, Lindenmuller L and Schwarz W 2008 IEEE Trans. Circuits Syst. I, Reg. Papers 55 3335
[23] Bao B C 2013 An Introduction to Chaotic Circuits (Beijing:Science Press) (in Chinese) p. 164
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[9] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[10] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[11] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[12] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[13] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[14] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[15] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
No Suggested Reading articles found!