Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100303    DOI: 10.1088/1674-1056/26/10/100303
GENERAL Prev   Next  

Improving continuous-variable quantum key distribution under local oscillator intensity attack using entanglement in the middle

Fang-Li Yang(杨芳丽)1, Ying Guo(郭迎)2, Jin-Jing Shi(石金晶)2, Huan-Li Wang(王焕礼)3, Jin-Jin Pan(潘矜矜)1
1. College of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin 541000, China;
2. School of Information Science and Engineering, Central South University, Changsha 410083, China;
3. Guilin Public Works Section of High Speed Railway, Nanning Railway Bureau, Guilin 541000, China
Abstract  

A modified continuous-variable quantum key distribution (CVQKD) protocol is proposed by originating the entangled source from a malicious third party Eve in the middle instead of generating it from the trustworthy Alice or Bob. This method is able to enhance the efficiency of the CVQKD scheme attacked by local oscillator (LO) intensity attack in terms of the generated secret key rate in quantum communication. The other indication of the improvement is that the maximum transmission distance and the maximum loss tolerance can be increased significantly, especially for CVQKD schemes based on homodyne detection.

Keywords:  continuous-variable      quantum key distribution      local oscillator intensity attack      entanglement in the middle  
Received:  27 March 2017      Revised:  14 June 2017      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61401519, and 61572529), the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ3415), the Science and Technology Project of Guangxi Zhuang Autonomous Region, China (Grant Nos. AC16380094 and 1598008-29), and the Natural Science Fund of Guangxi Zhuang Autonomous Region, China (Grant No. 2015GXNSFAA139298).

Corresponding Authors:  Ying Guo     E-mail:  yingguo@csu.edu.cn

Cite this article: 

Fang-Li Yang(杨芳丽), Ying Guo(郭迎), Jin-Jing Shi(石金晶), Huan-Li Wang(王焕礼), Jin-Jin Pan(潘矜矜) Improving continuous-variable quantum key distribution under local oscillator intensity attack using entanglement in the middle 2017 Chin. Phys. B 26 100303

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Du? sek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[4] Grosshans F 2005 Phys. Rev. Lett. 94 020504
[5] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[6] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
[7] Guo Y, Liao Q, Wang Y, Huang D, Huang P and Zeng G 2017 Phys. Rev. A 95032304
[8] Thearle O, Assad S M and Symul T 2016 Phys. Rev. A 93 042343
[9] Li Y, Bao W S, Li H W, Zhou C and Wang Y 2015 Chin. Phys. B 24 110307
[10] Gao G 2015 Chin. Phys. B 24 080305
[11] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[12] Yang F, Shi R, Guo Y, Shi J J and Zeng G 2015 Quantum Inf. Process. 14 3041
[13] Li H R, Li F L and Yang Y 2006 Chin. Phys. 15 2947
[14] He G Q, Zhu S W, Guo H B and Zeng G H 2008 Chin. Phys. B 17 1263
[15] Pirandola S, Braunstein S L and Lloyd S 2008 Phys. Rev. Lett. 101 200504
[16] Lorenz S, Rigas J, Heid M, Andersen U L, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 88 057902
[17] Ottaviani C, Mancini S and Pirandola S 2015 Phys. Rev. A 92 062323
[18] Lu Z, Shi J H and Li F G 2017 Chin. Phys. B 26 040304
[19] Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
[20] Navascués M and Acín A 2005 Phys. Rev. Lett. 94 020505
[21] Leverrier A and Grangier P 2010 Phys. Rev. A 81 062314
[22] Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Phys. Scr. 89 035101
[23] Zhou N R, Li J F, Yu Z B, Gong L H and Farouk A 2017 Quantum Inf. Process. 16 4
[24] Liu C Q, Zhu C H, Wang L H, Zhang L X and Pei C X 2016 Chin. Phys. Lett. 33 100301
[25] Liu Q and Tan Y G 2016 Chin. Phys. Lett. 33 90303
[26] Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F and Zhang Z M 2016 Acta Phys. Sin. 65 100302(in Chinese)
[27] Bao H Z, Bao W S, Wang Y, 2, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
[28] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[29] Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317
[30] Weedbrook C 2013 Phys. Rev. A 87 022308
[31] García-Patrón R and Cerf N J 2009 Phys. Rev. Lett. 102 130501
[32] Häseler H, Moroder T and L ütkenhaus N 2008 Phys. Rev. A 77 032303
[33] 2017 Phys. Rev. A 95 012316
[34] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 88 022339
[35] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313
[36] Lo H K and Chau H F 1999 Science 283 2050
[37] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[38] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[39] Ma X, Fung C H F and Lo H K 2007 Phys. Rev. A 76 012307
[40] Erven C, Couteau C, Laflamme R and Weihs G 2008 Opt. Express 16 16840
[41] Raymer M G, Cooper J, Carmichael H J, Beck M and Smithey D T 1995 J. Opt. Soc. Am. B 12 1801
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!