|
|
An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection |
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平) |
Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China |
|
|
Abstract Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. Here, using all-atom molecular dynamics simulations, we found that between pre-and post-translocation states of T7 RNA polymerase an intermediate state exists, where the O helix C-terminal residue tyrosine 639, which plays important roles in translocation, locates between its pre-and post-translocation positions and the side chain of the next template DNA nucleotide has moved into the active site. NTP selection in this intermediate state was studied, revealing that the selection in the intermediate state can be achieved relying on the effect of Watson-Crick interaction between NTP and template DNA nucleotide, effect of stability of the components near the active site such as the nascent DNA-RNA hybrid and role of tyrosine 639. This indicates that another NTP-selection pathway can also exist besides the main pathway where NTP selection begins at the post-translocation state upon the entry of NTP.
|
Received: 17 April 2017
Revised: 08 July 2017
Accepted manuscript online:
|
PACS:
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.40.Jc
|
(Brownian motion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374352 and 11674381) and the National Key Research and Development Program of China (Grant No. 2016YFA0301500). |
Corresponding Authors:
Ping Xie
E-mail: pxie@aphy.iphy.ac.cn
|
Cite this article:
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平) An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection 2017 Chin. Phys. B 26 100203
|
[1] |
Sekine S, Tagami S and Yokoyama S 2012 Curr. Opin. Struc. Biol. 22 110
|
[2] |
Vannini A and Cramer P 2012 Mol. Cell 45 439
|
[3] |
Svetlov V and Nudler E 2013 Bba-Gene Regul. Mech. 1829 20
|
[4] |
Landick R 1997 Cell 88 741
|
[5] |
Uptain S M, Kane C M and Chamberlin M J 1997 Ann. Rev. Biochem. 66 117
|
[6] |
von Hippel P H 1998 Science 281 660
|
[7] |
Doublie S and Ellenberger T 1998 Curr. Opin. Struc. Biol. 8 704
|
[8] |
Steitz T A 1999 J. Biol. Chem. 274 17395
|
[9] |
Yin Y W and Steitz T A 2004 Cell 116 393
|
[10] |
Tahirov T H, Temiakov D, Anikin M, Patlan V, McAllister W T, Vassylyev D G and Yokoyama S 2002 Nature 420 43
|
[11] |
Temiakov D, Patlan V, Anikin M, McAllister W T, Yokoyama S and Vassylyev D G 2004 Cell 116 381
|
[12] |
Holmes S F, Santangelo T J, Cunningham C K, Roberts J W and Erie D A 2006 J. Biol. Chem. 281 18677
|
[13] |
Svetlov V, Vassylyev D G and Artsimovitch I 2004 J. Biol. Chem. 279 38087
|
[14] |
Wang D, Bushnell D A, Westover K D, Kaplan C D and Kornberg R D 2006 Cell 127 941
|
[15] |
Alic N, Ayoub N, Landrieux E, Favry E, Baudouin-Cornu P, Riva M and Carles C 2007 Proc. Natl. Acad. Sci. USA 104 10400
|
[16] |
Kireeva M L, Nedialkov Y A, Cremona G H, Purtov Y A, Lubkowska L, Malagon F, Burton Z F, Strathern J N and Kashlev M 2008 Mol. Cell 30 557
|
[17] |
Sydow J F, Brueckner F, Cheung A C M, Damsma G E, Dengl S, Lehmann E, Vassylyev D and Cramer P 2009 Mol. Cell 34 710
|
[18] |
Vassylyev D G, Vassylyeva M N, Zhang J W, Palangat M, Artsimovitch I, and Landick R 2007 Nature 448 163
|
[19] |
Kaplan C D, Larsson K M and Kornberg R D 2008 Mol. Cell 30 547
|
[20] |
Kettenberger H, Armache K J and Cramer P 2004 Mol. Cell 16 955
|
[21] |
Depken M, Parrondo J M R and Grill S W 2013 Cell Rep. 5 521
|
[22] |
Huang J B, Brieba L G and Sousa R 2000 Biochemistry-Us 39 11571
|
[23] |
Anand V S and Patel S S 2006 J. Biol. Chem. 281 35677
|
[24] |
Sydow J F and Cramer P 2009 Curr. Opin. Struc. Biol. 19 732
|
[25] |
Silva D A, Weiss D R, Avila F P, Da L T, Levitt M, Wang D and Huang X H 2014 Proc. Natl. Acad. Sci. USA 111 7665
|
[26] |
Wang B B, Opron K, Burton Z F, Cukier R I and Feig M 2015 Nucleic Acids Res. 43 1133
|
[27] |
Wang Z F, Zhang Z Q, Fu Y B, Wang P Y and Xie P 2017 Chin. Phys. B 26 030201
|
[28] |
Yu J and Oster G 2012 Biophys. J. 102 532
|
[29] |
Duan B G, Wu S G, Da L T and Yu J 2014 Biophys. J. 107 2130
|
[30] |
Sousa R, Rose J and Wang B C 1994 J. Mol. Biol. 244 6
|
[31] |
Woo H J, Liu Y and Sousa R 2008 Proteins 73 1021
|
[32] |
Jeruzalmi D and Steitz T A 1998 Embo. J. 17 4101
|
[33] |
Li Y, Korolev S and Waksman G 1998 Embo. J. 17 7514
|
[34] |
Kool E T 2001 Ann. Rev. Bioph. Biom. 30 1
|
[35] |
Kellinger M W, Ulrich S, Chong J N, Kool E T and Wang D 2012 J. Am. Chem. Soc. 134 8231
|
[36] |
Xu L, Plouffe S W, Chong J, Wengel J and Wang D 2013 Angew Chem. Int. Ed. 52 12341
|
[37] |
Sousa R and Padilla R 1995 Embo. J. 14 4609
|
[38] |
Yoon H and Warshel A 2016 Proteins 84 1616
|
[39] |
Brieba L G and Sousa R 2000 Biochemistry-Us 39 919
|
[40] |
Thomen P, Lopez P J and Heslot F 2005 Phys. Rev. Lett. 94
|
[41] |
Thomen P, Lopez P J, Bockelmann U, Guillerez J, Dreyfus M and Heslot F 2008 Biophys. J. 95 2423
|
[42] |
Kennedy W P, Momand J R and Yin Y W 2007 J. Mol. Biol. 370 256
|
[43] |
Meagher K L, Redman L T and Carlson H A 2003 J. Comput. Chem. 24 1016
|
[44] |
Duan Z W, Xie P, Li W and Wang P Y 2012 Plos One 7 e36071
|
[45] |
Fu Y B, Wang Z F, Wang P Y and Xie P 2016 Sci. Rep.-Uk 6
|
[46] |
Wang Z F, Fu Y B, Wang P Y and Xie P 2017 Proteins 85 614
|
[47] |
Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
|
[48] |
Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G M, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J M and Kollman P 2003 J. Comput. Chem. 24 1999
|
[49] |
Price D J and Brooks C L 2004 J. Chem. Phys. 121 10096
|
[50] |
Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
|
[51] |
Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
|
[52] |
Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
|
[53] |
Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684
|
[54] |
Torrie G M and Valleau J P 1974 Chem. Phys. Lett. 28 578
|
[55] |
Torrie G M and Valleau J P 1977 J. Comput. Phys. 23 187
|
[56] |
Kumar S, Bouzida D, Swendsen R H, Kollman P A and Rosenberg J M 1992 J. Comput. Chem. 13 1011
|
[57] |
Thomen P, Lopez PJ, Bockelmann U, Guillerez J, Dreyfus M, et al. 2008 Biophys. J. 95 2423
|
[58] |
Xie P 2012 Proteins-Structure Function and Bioinformatics 80 2020
|
[59] |
Xie P 2012 J. Mol. Model. 18 1951
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|