Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100203    DOI: 10.1088/1674-1056/26/10/100203
GENERAL Prev   Next  

An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection

Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平)
Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
Abstract  

Phage T7 RNA polymerase is a single-subunit transcription enzyme, transcribing template DNA to RNA. Nucleoside triphosphate (NTP) selection and translocation are two critical steps of the transcription elongation. Here, using all-atom molecular dynamics simulations, we found that between pre-and post-translocation states of T7 RNA polymerase an intermediate state exists, where the O helix C-terminal residue tyrosine 639, which plays important roles in translocation, locates between its pre-and post-translocation positions and the side chain of the next template DNA nucleotide has moved into the active site. NTP selection in this intermediate state was studied, revealing that the selection in the intermediate state can be achieved relying on the effect of Watson-Crick interaction between NTP and template DNA nucleotide, effect of stability of the components near the active site such as the nascent DNA-RNA hybrid and role of tyrosine 639. This indicates that another NTP-selection pathway can also exist besides the main pathway where NTP selection begins at the post-translocation state upon the entry of NTP.

Keywords:  RNA polymerase      transcription elongation      fidelity control      molecular dynamics simulation  
Received:  17 April 2017      Revised:  08 July 2017      Accepted manuscript online: 
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Jc (Brownian motion)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374352 and 11674381) and the National Key Research and Development Program of China (Grant No. 2016YFA0301500).

Corresponding Authors:  Ping Xie     E-mail:  pxie@aphy.iphy.ac.cn

Cite this article: 

Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平) An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection 2017 Chin. Phys. B 26 100203

[1] Sekine S, Tagami S and Yokoyama S 2012 Curr. Opin. Struc. Biol. 22 110
[2] Vannini A and Cramer P 2012 Mol. Cell 45 439
[3] Svetlov V and Nudler E 2013 Bba-Gene Regul. Mech. 1829 20
[4] Landick R 1997 Cell 88 741
[5] Uptain S M, Kane C M and Chamberlin M J 1997 Ann. Rev. Biochem. 66 117
[6] von Hippel P H 1998 Science 281 660
[7] Doublie S and Ellenberger T 1998 Curr. Opin. Struc. Biol. 8 704
[8] Steitz T A 1999 J. Biol. Chem. 274 17395
[9] Yin Y W and Steitz T A 2004 Cell 116 393
[10] Tahirov T H, Temiakov D, Anikin M, Patlan V, McAllister W T, Vassylyev D G and Yokoyama S 2002 Nature 420 43
[11] Temiakov D, Patlan V, Anikin M, McAllister W T, Yokoyama S and Vassylyev D G 2004 Cell 116 381
[12] Holmes S F, Santangelo T J, Cunningham C K, Roberts J W and Erie D A 2006 J. Biol. Chem. 281 18677
[13] Svetlov V, Vassylyev D G and Artsimovitch I 2004 J. Biol. Chem. 279 38087
[14] Wang D, Bushnell D A, Westover K D, Kaplan C D and Kornberg R D 2006 Cell 127 941
[15] Alic N, Ayoub N, Landrieux E, Favry E, Baudouin-Cornu P, Riva M and Carles C 2007 Proc. Natl. Acad. Sci. USA 104 10400
[16] Kireeva M L, Nedialkov Y A, Cremona G H, Purtov Y A, Lubkowska L, Malagon F, Burton Z F, Strathern J N and Kashlev M 2008 Mol. Cell 30 557
[17] Sydow J F, Brueckner F, Cheung A C M, Damsma G E, Dengl S, Lehmann E, Vassylyev D and Cramer P 2009 Mol. Cell 34 710
[18] Vassylyev D G, Vassylyeva M N, Zhang J W, Palangat M, Artsimovitch I, and Landick R 2007 Nature 448 163
[19] Kaplan C D, Larsson K M and Kornberg R D 2008 Mol. Cell 30 547
[20] Kettenberger H, Armache K J and Cramer P 2004 Mol. Cell 16 955
[21] Depken M, Parrondo J M R and Grill S W 2013 Cell Rep. 5 521
[22] Huang J B, Brieba L G and Sousa R 2000 Biochemistry-Us 39 11571
[23] Anand V S and Patel S S 2006 J. Biol. Chem. 281 35677
[24] Sydow J F and Cramer P 2009 Curr. Opin. Struc. Biol. 19 732
[25] Silva D A, Weiss D R, Avila F P, Da L T, Levitt M, Wang D and Huang X H 2014 Proc. Natl. Acad. Sci. USA 111 7665
[26] Wang B B, Opron K, Burton Z F, Cukier R I and Feig M 2015 Nucleic Acids Res. 43 1133
[27] Wang Z F, Zhang Z Q, Fu Y B, Wang P Y and Xie P 2017 Chin. Phys. B 26 030201
[28] Yu J and Oster G 2012 Biophys. J. 102 532
[29] Duan B G, Wu S G, Da L T and Yu J 2014 Biophys. J. 107 2130
[30] Sousa R, Rose J and Wang B C 1994 J. Mol. Biol. 244 6
[31] Woo H J, Liu Y and Sousa R 2008 Proteins 73 1021
[32] Jeruzalmi D and Steitz T A 1998 Embo. J. 17 4101
[33] Li Y, Korolev S and Waksman G 1998 Embo. J. 17 7514
[34] Kool E T 2001 Ann. Rev. Bioph. Biom. 30 1
[35] Kellinger M W, Ulrich S, Chong J N, Kool E T and Wang D 2012 J. Am. Chem. Soc. 134 8231
[36] Xu L, Plouffe S W, Chong J, Wengel J and Wang D 2013 Angew Chem. Int. Ed. 52 12341
[37] Sousa R and Padilla R 1995 Embo. J. 14 4609
[38] Yoon H and Warshel A 2016 Proteins 84 1616
[39] Brieba L G and Sousa R 2000 Biochemistry-Us 39 919
[40] Thomen P, Lopez P J and Heslot F 2005 Phys. Rev. Lett. 94
[41] Thomen P, Lopez P J, Bockelmann U, Guillerez J, Dreyfus M and Heslot F 2008 Biophys. J. 95 2423
[42] Kennedy W P, Momand J R and Yin Y W 2007 J. Mol. Biol. 370 256
[43] Meagher K L, Redman L T and Carlson H A 2003 J. Comput. Chem. 24 1016
[44] Duan Z W, Xie P, Li W and Wang P Y 2012 Plos One 7 e36071
[45] Fu Y B, Wang Z F, Wang P Y and Xie P 2016 Sci. Rep.-Uk 6
[46] Wang Z F, Fu Y B, Wang P Y and Xie P 2017 Proteins 85 614
[47] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[48] Duan Y, Wu C, Chowdhury S, Lee M C, Xiong G M, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J M and Kollman P 2003 J. Comput. Chem. 24 1999
[49] Price D J and Brooks C L 2004 J. Chem. Phys. 121 10096
[50] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[51] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[52] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[53] Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684
[54] Torrie G M and Valleau J P 1974 Chem. Phys. Lett. 28 578
[55] Torrie G M and Valleau J P 1977 J. Comput. Phys. 23 187
[56] Kumar S, Bouzida D, Swendsen R H, Kollman P A and Rosenberg J M 1992 J. Comput. Chem. 13 1011
[57] Thomen P, Lopez PJ, Bockelmann U, Guillerez J, Dreyfus M, et al. 2008 Biophys. J. 95 2423
[58] Xie P 2012 Proteins-Structure Function and Bioinformatics 80 2020
[59] Xie P 2012 J. Mol. Model. 18 1951
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!