Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108503    DOI: 10.1088/1674-1056/26/10/108503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Detailed study of NBTI characterization in 40-nm CMOS process using comprehensive models

Yan Zeng(曾严)1, Xiao-Jin Li(李小进)1, Jian Qing(卿健)1, Ya-Bin Sun(孙亚宾)1, Yan-Ling Shi(石艳玲)1, Ao Guo(郭奥)2, Shao-Jian Hu(胡少坚)2
1. Shanghai Key Laboratory of Multidimensional Information Processing and Department of Electrical Engineering, East China Normal University, Shanghai 200241, China;
2. Shanghai Integrated Circuit Research & Development Center, Shanghai 201203, China
Abstract  The impact of negative bias temperature instability (NBTI) can be ascribed to three mutually uncorrelated factors, including hole trapping by pre-existing traps (△ VHT) in gate insulator, generated traps (△ VOT) in bulk insulator, and interface trap generation (△ VIT). In this paper, we have experimentally investigated the NBTI characteristic for a 40-nm complementary metal-oxide semiconductor (CMOS) process. The power-law time dependence, temperature activation, and field acceleration have also been explored based on the physical reaction-diffusion model. Moreover, the end-of-life of stressed device dependent on the variation of stress field and temperature have been evaluated. With the consideration of locking effect, the recovery characteristics have been modelled and discussed.
Keywords:  negative bias temperature instability (NBTI)      reaction diffusion (RD)      interface trap      H2 locking effect  
Received:  04 June 2017      Revised:  26 June 2017      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  77.55.df (For silicon electronics)  
  66.30.J- (Diffusion of impurities ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574056 and 61204038), the Natural Science Funds of Shanghai, China (Grant No. 14ZR1412000), the Fund from the Science and Technology Commission of Shanghai Municipality (Grant No. 14DZ2260800), and Shanghai Sailing Program (Grant No. 17YF1404700).
Corresponding Authors:  Xiao-Jin Li, Xiao-Jin Li     E-mail:  xjli@ee.ecnu.edu.cn;ybsun@ee.ecnu.edu.cn

Cite this article: 

Yan Zeng(曾严), Xiao-Jin Li(李小进), Jian Qing(卿健), Ya-Bin Sun(孙亚宾), Yan-Ling Shi(石艳玲), Ao Guo(郭奥), Shao-Jian Hu(胡少坚) Detailed study of NBTI characterization in 40-nm CMOS process using comprehensive models 2017 Chin. Phys. B 26 108503

[1] Tang H L, Xu B L, Zhuang Y Q, Zhang L and Li C 2016 Acta Phys. Sin. 65 168502(in Chinese)
[2] Krishnan A T, Reddy V, Chakravarthi S, Rodriguez J, John S and Krishnan S 2003 IEEE International Electron Devices Meeting, 8-10 December, 2003, p. 14.5.1
[3] Liu H X and Hao Y 2016 Chin. Phys. 16 2111
[4] Cao Y R, Ma X H, Hao Y and Hu S G 2010 Chin. Phys. B 19 047307
[5] Joshi K, Mukhopadhyay S, Goel N and Mahapatra S 2012 IEEE International Reliability Physics Symposium, 15-19 April, 2012, p. 5A.3.1
[6] Mahapatra S (ed.) 2016 Fundamentals of Bias Temperature Instability in MOS Transistors (New Delhi:Springer) pp. 209-263
[7] Goel N, Joshi K, Mukhopadhyay S, Nanaware N and Mahapatra S 2014 Microelectron. Rel. 54 491
[8] Mahapatra S, Goel N, Desai S, Gupta S, Jose B, Mukhopadhyay S, Joshi K, Jain A, Islam A E and Alam M A 2013 IEEE Trans. Electron Dev. 60 901
[9] Parihar N, Goel N, Chaudhary A and Mahapatra S 2016 IEEE Trans. Electron Dev. 63 946
[10] Mahapatra S, Islam A, Deora S, Maheta V, Joshi K, Jain A and Alam M, 2011 International Reliability Physics Symposium, 10-14 April, 2011, p. 6A.3.1
[11] Desai S, Mukhopadhyay S, Goel N, Nanaware N, Jose B, Joshi K and Mahapatra S 2013 IEEE International Reliability Physics Symposium, 14-18 April, 2013, p. XT.2.1
[12] Yoshiki Y 2014 Microelectron. Rel. 54 520
[13] Krishnan A T, Chancellor C, Chakravarthi S, Nicollian P E, Reddy V, Varghese A, Khamankar R B and Krishnan S 2005 IEEE International Electron Devices Meeting Technical Digest, 5-7 December, 2005, p. 691
[14] Joshi K, Mukhopadhyay S, Goel N, Nanware N and Mahapatra S 2014 IEEE Trans. Electron Dev. 61 408
[15] Mahapatra S (ed.) 2016 Fundamentals of Bias Temperature Instability in MOS Transistors (New Delhi:Springer), pp. 127-179
[16] Mahapatra S, Kumar P B and Alam M A 2004 IEEE Trans. Electron Dev. 51 1371
[17] Mahapatra S, Huard V, Kerber A, Reddy V, Kalpat S and Haggag A 2014 IEEE International Reliability Physics Symposium Proceedings, 1-5 June, 2014, p. 3B.1.1
[18] Nozomu K, Yasuhiro D and Nobuyuki W 2009 Microelectron. Rel. 49 989
[19] Rangan S, Mielke N and Yeh E C C 2003 IEEE International Electron Devices Meeting Technical Digest, 8-10 December, 2003, p. 14.3.1
[20] Deora S, Maheta V, Islam A, Alam M, and Mahapatra S 2009 IEEE Electron Dev. Lett. 30 978
[21] Cao Y R, Yang Y, Cao C, He W L, Zheng X F, Ma X H and Hao Y 2015 Chin. Phys. B 24 097304
[22] Kumar S V, Kim C H, Sapatnekar S S 2009 IEEE Trans. Dev. Mater. Rel. 9 537
[23] Goel N, Naphade T and Mahapatra S 2015 IEEE International Reliability Physics Symposium, 19-23 April, 2015, p. 4A.3.1
[1] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[2] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[3] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[4] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[5] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[6] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[7] First-principles investigations of proton generation in α-quartz
Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2018, 27(3): 037102.
[8] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[9] Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations
Hao Xu(徐昊), Hong Yang(杨红), Wei-Chun Luo(罗维春), Ye-Feng Xu(徐烨峰), Yan-Rong Wang(王艳蓉), Bo Tang(唐波), Wen-Wu Wang(王文武), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Jiang Yan(闫江), Hui-Long Zhu(朱慧珑), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087305.
[10] Recovery of PMOSFET NBTI under different conditions
Cao Yan-Rong (曹艳荣), Yang Yi (杨毅), Cao Cheng (曹成), He Wen-Long (何文龙), Zheng Xue-Feng (郑雪峰), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(9): 097304.
[11] Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor
Chen Hai-Feng (陈海峰), Guo Li-Xin (过立新), Zheng Pu-Yang (郑璞阳), Dong Zhao (董钊), Zhang Qian (张茜). Chin. Phys. B, 2015, 24(7): 078502.
[12] Interfacial and electrical characteristics of a HfO2/n-InAlAs MOS-capacitor with different dielectric thicknesses
Guan He (关赫), Lv Hong-Liang (吕红亮), Guo Hui (郭辉), Zhang Yi-Men (张义门), Zhang Yu-Ming (张玉明), Wu Li-Fan (武利翻). Chin. Phys. B, 2015, 24(12): 126701.
[13] Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
Zhang Yue (张月), Zhuo Qing-Qing (卓青青), Liu Hong-Xia (刘红侠), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057304.
[14] Interface states in Al2O3/AlGaN/GaN metal-oxide-semiconductor structure by frequency dependent conductance technique
Liao Xue-Yang (廖雪阳), Zhang Kai (张凯), Zeng Chang (曾畅), Zheng Xue-Feng (郑雪峰), En Yun-Fei (恩云飞), Lai Ping (来萍), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057301.
[15] Gate-modulated generation–recombination current in n-type metal–oxide–semiconductor field-effect transistor
Chen Hai-Feng (陈海峰). Chin. Phys. B, 2014, 23(12): 128502.
No Suggested Reading articles found!