CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles investigations of proton generation in α-quartz |
Yunliang Yue(乐云亮)1, Yu Song(宋宇)2,3, Xu Zuo(左旭)1,4 |
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China |
|
|
Abstract Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in α -quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the H2 molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly-hydrogenated defects. In particular, a fully passivated E'2 center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices.
|
Received: 19 October 2017
Revised: 07 December 2017
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
61.80.Az
|
(Theory and models of radiation effects)
|
|
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), the National Natural Science Foundation China (Grant No. NSFC 11404300), and the National Basic Research Program of China (Grant No. 2011CB606405). |
Corresponding Authors:
Xu Zuo
E-mail: xzuo@nankai.edu.cn
|
Cite this article:
Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭) First-principles investigations of proton generation in α-quartz 2018 Chin. Phys. B 27 037102
|
[1] |
Fleetwood D M, Pantelides S T and Schrimpf R D 2008 Defects in Microelectronic Materials and Devices (Boca Raton:CRC Press) pp. 215-238
|
[2] |
Pacchioni G, Skuja L and Griscom D L 2000 Defects in SiO2 and Related Dielectrics:Science and Technology (New York:Springer Science & Business Media) pp. 529-556
|
[3] |
Devine R A 1988 The Physics and Technology of Amorphous SiO2 (New York:Plenum Press) pp. 259-265
|
[4] |
Deal B E and Helms C R 1993 The Physics and Chemistry of SiO2 and the Si-SiO2 Interface (New York:Springer Science & Business Media) pp. 455-457
|
[5] |
Pease R L, Dunham G W, Seiler J E, Platteter D G and Mcclure S S 2007 IEEE Trans. Nucl. Sci. 54 1049
|
[6] |
Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S and Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913
|
[7] |
Batyrev I G, Hughart D, Durand R, Bounasser M, Tuttle B R, Fleetwood D M, Schrimpf R D, Rashkeev S N, Dunham G W, Law M and Pantelides S T 2008 IEEE Trans. Nucl. Sci. 55 3039
|
[8] |
Rashkeev S N, Fleetwood D M, Schrimpf R D and Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158
|
[9] |
Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
|
[10] |
Rashkeev S N, Fleetwood D M, Schrimpf R D and Pantelides S T 2001 Phys. Rev. Lett. 87 165506
|
[11] |
Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E and Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169
|
[12] |
Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L and Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
|
[13] |
Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M and Schrimpf R D 2007 Microelectron. Reliab. 47 903
|
[14] |
Conley J F and Lenahan P M 1993 IEEE Trans. Nucl. Sci. 40 1335
|
[15] |
Conley J F and Lenahan P M 1993 Appl. Phys. Lett. 62 40
|
[16] |
Van Ginhoven R M, Hjalmarson H P, Edwards A H and Tuttle B R 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 250 274
|
[17] |
Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M and Pantelides S T 2010 IEEE Trans. Nucl. Sci. 57 3046
|
[18] |
Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D and Pantelides S T 2015 IEEE Trans. Nucl. Sci. 62 2169
|
[19] |
Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937
|
[20] |
Silsbee R H 1961 J. Appl. Phys. 32 1459
|
[21] |
Jani M G, Bossoli R B and Halliburton L E 1983 Phys. Rev. B 27 2285
|
[22] |
Rudra J K, Fowler W B and Feigl F J 1985 Phys. Rev. Lett. 55 2614
|
[23] |
Isoya J, Weil J and Halliburton L 1981 J. Chem. Phys. 74 5436
|
[24] |
Vitiello M, Lopez N, Illas F and Pacchioni G 2000 J. Phys. Chem. A 104 4674
|
[25] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[26] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[27] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[28] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[29] |
Levien L, Prewitt C T and Weidner D J 1980 Am. Mineral. 65 920
|
[30] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[31] |
Alkauskas A, Broqvist P, Devynck F and Pasquarello A 2008 Phys. Rev. Lett. 101 106802
|
[32] |
Stahlbush R E, Mrstik B J and Lawrence R K 1990 IEEE Trans. Nucl. Sci. 37 1641
|
[33] |
Stahlbush R E, Edwards A H, Griscom D L and Mrstik B J 1993 J. Appl. Phys. 73 658
|
[34] |
Snyder K C and Fowler W B 1993 Phys. Rev. B 48 13238
|
[35] |
Blöchl P E 2000 Phys. Rev. B 62 6158
|
[36] |
Boero M, Pasquarello A, Sarnthein J and Car R 1997 Phys. Rev. Lett. 78 887
|
[37] |
Godet J and Pasquarello A 2005 Microelectron. Eng. 80 288
|
[38] |
Sushko P V, Mukhopadhyay S, Mysovsky A S, Sulimov V B, Taga A and Shluger A L 2005 J. Phys.:Condens. Matter 17 S2115
|
[39] |
Girard S, Richard N, Ouerdane Y, Origlio G, Boukenter A, Martin-Samos L, Paillet P, Meunier J P, Baggio J and Cannas M 2008 IEEE Trans. Nucl. Sci. 55 3508
|
[40] |
Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D and Pantelides S T 2002 Phys. Rev. Lett. 89 285505
|
[41] |
Griscom D L 1985 J. Appl. Phys. 58 2524
|
[42] |
Griscom D L 1985 J. Non-Cryst. Solids 73 51
|
[43] |
Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923
|
[44] |
Griscom D L 1984 Nucl. Instrum. Methods Phys. Res., Sect. B 1 481
|
[45] |
Godet J, Giustino F and Pasquarello A 2007 Phys. Rev. Lett. 99 126102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|