Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037102    DOI: 10.1088/1674-1056/27/3/037102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigations of proton generation in α-quartz

Yunliang Yue(乐云亮)1, Yu Song(宋宇)2,3, Xu Zuo(左旭)1,4
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China
Abstract  

Proton plays a key role in the interface-trap formation that is one of the primary reliability concerns, thus learning how it behaves is key to understand the radiation response of microelectronic devices. The first-principles calculations have been applied to explore the defects and their reactions associated with the proton release in α -quartz, the well-known crystalline isomer of amorphous silica. When a high concentration of molecular hydrogen (H2) is present, the proton generation can be enhanced by cracking the H2 molecules at the positively charged oxygen vacancies in dimer configuration. If the concentration of molecular hydrogen is low, the proton generation mainly depends on the proton dissociation of the doubly-hydrogenated defects. In particular, a fully passivated E'2 center can dissociate to release a proton barrierlessly by structure relaxation once trapping a hole. This research provides a microscopic insight into the proton release in silicon dioxide, the critical step associated with the interface-trap formation under radiation in microelectronic devices.

Keywords:  first-principles calculation      interface trap      proton      silicon dioxide  
Received:  19 October 2017      Revised:  07 December 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Bb (Theories and models of crystal defects)  
  61.80.Az (Theory and models of radiation effects)  
Fund: 

Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), CAEP Microsystem and THz Science and Technology Foundation, China (Grant No. CAEPMT201501), the National Natural Science Foundation China (Grant No. NSFC 11404300), and the National Basic Research Program of China (Grant No. 2011CB606405).

Corresponding Authors:  Xu Zuo     E-mail:  xzuo@nankai.edu.cn

Cite this article: 

Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭) First-principles investigations of proton generation in α-quartz 2018 Chin. Phys. B 27 037102

[1] Fleetwood D M, Pantelides S T and Schrimpf R D 2008 Defects in Microelectronic Materials and Devices (Boca Raton:CRC Press) pp. 215-238
[2] Pacchioni G, Skuja L and Griscom D L 2000 Defects in SiO2 and Related Dielectrics:Science and Technology (New York:Springer Science & Business Media) pp. 529-556
[3] Devine R A 1988 The Physics and Technology of Amorphous SiO2 (New York:Plenum Press) pp. 259-265
[4] Deal B E and Helms C R 1993 The Physics and Chemistry of SiO2 and the Si-SiO2 Interface (New York:Springer Science & Business Media) pp. 455-457
[5] Pease R L, Dunham G W, Seiler J E, Platteter D G and Mcclure S S 2007 IEEE Trans. Nucl. Sci. 54 1049
[6] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S and Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913
[7] Batyrev I G, Hughart D, Durand R, Bounasser M, Tuttle B R, Fleetwood D M, Schrimpf R D, Rashkeev S N, Dunham G W, Law M and Pantelides S T 2008 IEEE Trans. Nucl. Sci. 55 3039
[8] Rashkeev S N, Fleetwood D M, Schrimpf R D and Pantelides S T 2004 IEEE Trans. Nucl. Sci. 51 3158
[9] Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[10] Rashkeev S N, Fleetwood D M, Schrimpf R D and Pantelides S T 2001 Phys. Rev. Lett. 87 165506
[11] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E and Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169
[12] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L and Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
[13] Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M and Schrimpf R D 2007 Microelectron. Reliab. 47 903
[14] Conley J F and Lenahan P M 1993 IEEE Trans. Nucl. Sci. 40 1335
[15] Conley J F and Lenahan P M 1993 Appl. Phys. Lett. 62 40
[16] Van Ginhoven R M, Hjalmarson H P, Edwards A H and Tuttle B R 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 250 274
[17] Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M and Pantelides S T 2010 IEEE Trans. Nucl. Sci. 57 3046
[18] Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D and Pantelides S T 2015 IEEE Trans. Nucl. Sci. 62 2169
[19] Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937
[20] Silsbee R H 1961 J. Appl. Phys. 32 1459
[21] Jani M G, Bossoli R B and Halliburton L E 1983 Phys. Rev. B 27 2285
[22] Rudra J K, Fowler W B and Feigl F J 1985 Phys. Rev. Lett. 55 2614
[23] Isoya J, Weil J and Halliburton L 1981 J. Chem. Phys. 74 5436
[24] Vitiello M, Lopez N, Illas F and Pacchioni G 2000 J. Phys. Chem. A 104 4674
[25] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Levien L, Prewitt C T and Weidner D J 1980 Am. Mineral. 65 920
[30] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[31] Alkauskas A, Broqvist P, Devynck F and Pasquarello A 2008 Phys. Rev. Lett. 101 106802
[32] Stahlbush R E, Mrstik B J and Lawrence R K 1990 IEEE Trans. Nucl. Sci. 37 1641
[33] Stahlbush R E, Edwards A H, Griscom D L and Mrstik B J 1993 J. Appl. Phys. 73 658
[34] Snyder K C and Fowler W B 1993 Phys. Rev. B 48 13238
[35] Blöchl P E 2000 Phys. Rev. B 62 6158
[36] Boero M, Pasquarello A, Sarnthein J and Car R 1997 Phys. Rev. Lett. 78 887
[37] Godet J and Pasquarello A 2005 Microelectron. Eng. 80 288
[38] Sushko P V, Mukhopadhyay S, Mysovsky A S, Sulimov V B, Taga A and Shluger A L 2005 J. Phys.:Condens. Matter 17 S2115
[39] Girard S, Richard N, Ouerdane Y, Origlio G, Boukenter A, Martin-Samos L, Paillet P, Meunier J P, Baggio J and Cannas M 2008 IEEE Trans. Nucl. Sci. 55 3508
[40] Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D and Pantelides S T 2002 Phys. Rev. Lett. 89 285505
[41] Griscom D L 1985 J. Appl. Phys. 58 2524
[42] Griscom D L 1985 J. Non-Cryst. Solids 73 51
[43] Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923
[44] Griscom D L 1984 Nucl. Instrum. Methods Phys. Res., Sect. B 1 481
[45] Godet J, Giustino F and Pasquarello A 2007 Phys. Rev. Lett. 99 126102
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[10] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[11] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!