Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104201    DOI: 10.1088/1674-1056/26/10/104201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure

Jia-Ye Wu(吴嘉野), Yuan-Zhi Gong(龚远志), Pei-Ran Huang(黄培然), Gen-Jun Ma(马根骏), Qiao-Feng Dai(戴峭峰)
Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  

In this paper, an optical radiative cooler with quasi-Cantor structure is theoretically proposed and analyzed. This simple and symmetrically designed optical structure operates upon continuous thermal sources in diurnal subtropical conditions, and its efficiency is much higher than natural cooling, for instance, when operating upon a typical 323.15 K continuous thermal source with a wind speed at 3 m·-1, it can generate a net cooling power of 363.68 W·m-2, which is 18.26% higher than that of non-radiative heat exchange (natural cooling) under the same conditions. Additionally, several aspects are considered in its design to ensure a low cost in application, which is of great economical and environmental significance.

Keywords:  thin film      photonic quasicrystal      photonic crystal      nanophotonics      radiative cooling  
Received:  11 May 2017      Revised:  11 July 2017      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
  61.44.Br (Quasicrystals)  
Fund: 

Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313851) and the Provincial Undergraduate Training Program for Innovation and Entrepreneurship of Guangdong Province, China (Grant No. 201610574149).

Corresponding Authors:  Qiao-Feng Dai     E-mail:  daiqf@scnu.edu.cn

Cite this article: 

Jia-Ye Wu(吴嘉野), Yuan-Zhi Gong(龚远志), Pei-Ran Huang(黄培然), Gen-Jun Ma(马根骏), Qiao-Feng Dai(戴峭峰) Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure 2017 Chin. Phys. B 26 104201

[1] Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V and Troise G 1975 Sol. Energy 17 83
[2] Head A K (U.S. Patent) US3043112[1962]
[3] Johnson T E 1975 Sol. Energy 17 173
[4] Givoni B 1977 Energ. Buildings 1 141
[5] Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V and Troise G 1977 Appl. Energy 3 267
[6] Harrison A W and Walton M R 1978 Sol. Energy 20 185
[7] Michell D and Biggs K L 1979 Appl. Energy 5 263
[8] Granqvist C G 1981 Appl. Opt. 20 2606
[9] Granqvist C G and Hjortsberg A 1981 J. Appl. Phys. 52 4205
[10] Granqvist C G and Hjortsberg A 1980 Appl. Phys. Lett. 36 139
[11] Addeo A, Nicolais L and Romeo G 1980 Sol. Energy 24 93
[12] Rephaeli E, Raman A and Fan S 2013 Nano Lett. 13 1457
[13] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
[14] Gentle A R and Smith G B 2015 Adv. Sci. 2 1500119
[15] Zhu L, Raman A and Fan S 2013 Appl. Phys. Lett. 103 223902
[16] Wu S H and Povinelli M L 2015 Opt. Express 23 A1363
[17] Zhu L, Raman A P and Fan S 2015 Proc. Natl. Acad. Sci. USA 112 12282
[18] Zhu L, Raman A, Wang K X, Anoma M A and Fan S 2014 Optica 1 32
[19] Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047
[20] Chen Z, Zhu L, Raman A and Fan S 2016 Nat. Commun. 7 13729
[21] Hossain M and Gu M 2016 Adv. Sci. 2 1500360
[22] Harrison A W 1981 Sol. Energy 26 243
[23] Berdahl P and Fromberg R 1982 Sol. Energy 29 299
[24] Berk A, Conforti P, Kennett R, Perkins T, Hawes F and van den Bosch J 2014 SPIE 90880H
[25] Gentle A R and Smith G B 2010 Nano Lett. 10 373
[26] IEC-60904-3-2008 International Standard 2008 IEC
[27] Yeh P 1988 Optical Waves in Layered Media (New York:John Wiley & Sons)
[28] Palik E 1998 Handbook of Optical Constants of Solids (Orlando:Academic Press)
[29] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[30] Wood D L, Nassau K, Kometani T Y and Nash D L 1990 Appl. Opt. 29 604
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[9] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[10] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[11] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[14] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[15] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
No Suggested Reading articles found!