Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104101    DOI: 10.1088/1674-1056/26/10/104101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A leap-frog discontinuous Galerkin time-domain method of analyzing electromagnetic scattering problems

Xue-Wu Cui(崔学武), Feng Yang(杨峰), Long-Jian Zhou(周龙建), Min Gao(高敏), Fei Yan(闫飞), Zhi-Peng Liang(梁志鹏)
School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  

Several major challenges need to be faced for efficient transient multiscale electromagnetic simulations, such as flexible and robust geometric modeling schemes, efficient and stable time-stepping algorithms, etc. Fortunately, because of the versatile choices of spatial discretization and temporal integration, a discontinuous Galerkin time-domain (DGTD) method can be a very promising method of solving transient multiscale electromagnetic problems. In this paper, we present the application of a leap-frog DGTD method to the analyzing of the multiscale electromagnetic scattering problems. The uniaxial perfect matching layer (UPML) truncation of the computational domain is discussed and formulated in the leap-frog DGTD context. Numerical validations are performed in the challenging test cases demonstrating the accuracy and effectiveness of the method in solving transient multiscale electromagnetic problems compared with those of other numerical methods.

Keywords:  discontinuous Galerkin      time-domain simulation      radar cross section  
Received:  17 March 2017      Revised:  20 April 2017      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  02.60.Cb (Numerical simulation; solution of equations)  
  42.68.Mj (Scattering, polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61301056 and 11176007), the Sichuan Provincial Science and Technology Support Program, China (Grant No. 2013HH0047), the Fok Ying Tung Education Foundation, China (Grant No. 141062), and the "111" Project, China (Grant No. B07046).

Corresponding Authors:  Feng Yang     E-mail:  yangf@uestc.edu.cn

Cite this article: 

Xue-Wu Cui(崔学武), Feng Yang(杨峰), Long-Jian Zhou(周龙建), Min Gao(高敏), Fei Yan(闫飞), Zhi-Peng Liang(梁志鹏) A leap-frog discontinuous Galerkin time-domain method of analyzing electromagnetic scattering problems 2017 Chin. Phys. B 26 104101

[1] Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan) pp. 1-211
[2] Yee K S 1966 IEEE Trans. Anten. Propag. AP-14 302
[3] Okoniewski M, Okoniewska E and Stuchly M A 1997 IEEE Trans. Anten. Propag. 45 422
[4] Lee J F and Sacks Z 1995 IEEE Trans. Magn. 31 1325
[5] Chen R S, Du L, Ye Z B and Yang Y 2009 IEEE Trans. Anten. Propag. 57 3216
[6] Hesthaven J S and Warburton T 2002 J. Comput. Phys. 181 186
[7] Lu T, Zhang P W and Cai W 2004 J. Comput. Phys. 200 549
[8] Xu H, Ding D Z, Bi J J and Chen R S 2016 IEEE Anten. Wirel. Propag. Lett. 16 908
[9] Hesthaven J S and Warburton T 2008 Nodal Discontinuous Galerkin Methods. Algorithms, Analysis, and Applications (New York:Springer) pp. 1-13
[10] Bérenger J P 1994 J. Comput. Phys. 114 185
[11] Shankar V, Mohammadian A H and Hall W F 1990 Electromagnetics 10 127
[12] Mohammadian A H, Shankar V and Hall W F 1991 Comput. Phys. Commun. 68 175
[13] Montseny E, Pernet S, Ferriéres X and Cohen G 2008 J. Comput. Phys. 227 6795
[14] Chen J F and Liu Q H 2013 Proc. IEEE 101 242
[15] Woo A C, Wang H T G, Schuh M J and Sanders M L 1993 IEEE Anten. Propag. Mag. 35 84
[16] Webb J P 1999 IEEE Trans. Anten. Propag. 47 1244
[17] Dosopoulos S and Lee J F 2010 IEEE Trans. Anten. Propag. 58 4085
[18] Bérenger J P 2002 IEEE Trans. Anten. Propag. 50 258
[19] Chew W C and Weedon W H 1994 Microw. Opt. Technol. Lett. 7 599
[20] Teixeira F L and Chew W C 1998 IEEE Microw. Guided Wave Lett. 8 223
[21] Marais N and Davidson D B 2008 IEEE Trans. Anten. Propag. 56 3743
[22] Fezoui L, Lanteri S, Lohrengel S and Piperno S 2005 ESAIM:Math. Model. Numer. Anal. 39 1149
[23] Sankaran K, Fumeaux C and Vahldieck R 2006 IEEE Trans. Microw. Theory Tech. 54 4297
[1] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[2] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
[3] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[4] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
[5] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[6] Ultra-wideband RCS reduction using novel configured chessboard metasurface
Ya-Qiang Zhuang(庄亚强), Guang-Ming Wang(王光明), He-Xiu Xu(许河秀). Chin. Phys. B, 2017, 26(5): 054101.
[7] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[8] Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models
Xia Wei (夏威), Dai Xiao-Xia (代小霞), Feng Yuan (冯圆). Chin. Phys. B, 2015, 24(12): 129501.
[9] Tunable terahertz plasmon in grating-gate coupled graphene with a resonant cavity
Yan Bo (闫博), Yang Xin-Xin (杨昕昕), Fang Jing-Yue (方靖岳), Huang Yong-Dan (黄永丹), Qin Hua (秦华), Qin Shi-Qiao (秦石乔). Chin. Phys. B, 2015, 24(1): 015203.
[10] Analysis and applications of a frequency selectivesurface via a random distribution method
Xie Shao-Yi (谢少毅), Huang Jing-Jian (黄敬健), Liu Li-Guo (刘立国), Yuan Nai-Chang (袁乃昌). Chin. Phys. B, 2014, 23(4): 047802.
[11] Modified Burgers equation by local discontinuous Galerkin method
Zhang Rong-Pei (张荣培), Yu Xi-Jun (蔚喜军), Zhao Guo-Zhong (赵国忠). Chin. Phys. B, 2013, 22(3): 030210.
[12] Direct discontinuous Galerkin method for the generalized Burgers–Fisher equation
Zhang Rong-Pei (张荣培), Zhang Li-Wei (张立伟). Chin. Phys. B, 2012, 21(9): 090206.
[13] Solving coupled nonlinear Schrödinger equations via a direct discontinuous Galerkin method
Zhang Rong-Pei(张荣培), Yu Xi-Jun(蔚喜军), and Feng Tao (冯涛) . Chin. Phys. B, 2012, 21(3): 030202.
[14] Local discontinuous Galerkin method for solving Burgers and coupled Burgers equations
Zhang Rong-Pei(张荣培), Yu Xi-Jun(蔚喜军), and Zhao Guo-Zhong(赵国忠) . Chin. Phys. B, 2011, 20(11): 110205.
No Suggested Reading articles found!