|
|
Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate |
Tian-Fu Xu(徐天赋)1, Yu-Feng Zhang(张玉峰)1, Lei-Chao Xu(许磊超)1, Zai-Dong Li(李再东)2,3 |
1. School of Science, Yanshan University, Qinhuangdao 066004, China; 2. Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China; 3. Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract We study the moving bright solitons in the weak attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear Schrödinger equation with the variational method and the imaginary time evolution method, two kinds of solitons (plane wave soliton and stripe solitons) are found in different parameter regions. It is shown that the soliton speed dominates its structure. The detuning between the Raman beam and energy states of the atoms decides the spin polarization strength of the system. The soliton dynamics is also studied for various moving speed and we find that the shape of individual components can be kept when the speed of soliton is low.
|
Received: 18 April 2017
Revised: 19 June 2017
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304270, 61774001, and 11475144) and the Key Project of Scientific and Technological Research of Hebei Province, China (Grant No. ZD2015133). |
Corresponding Authors:
Tian-Fu Xu, Zai-Dong Li
E-mail: tfxu@ysu.edu.cn;lizd@hebut.edu.cn
|
Cite this article:
Tian-Fu Xu(徐天赋), Yu-Feng Zhang(张玉峰), Lei-Chao Xu(许磊超), Zai-Dong Li(李再东) Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate 2017 Chin. Phys. B 26 100304
|
[1] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[4] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[5] |
Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
|
[6] |
Lin Y J, Compton R L, Jimenez-Garca K, Porto J V and Spielman I B 2009 Nature 462 628
|
[7] |
Galitski V and Spielman I B 2013 Nature 4 49
|
[8] |
Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
|
[9] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[10] |
Kevrekidis P G and Frantzeskakis D J 2016 Rev. Phys. 1 140
|
[11] |
Zhu Q, Zhang C and Wu B 2013 Europhys. Lett. 100 50003
|
[12] |
Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
|
[13] |
Wu C 2009 Mod. Phys. Lett. B 23 1
|
[14] |
Xu Y, Zhang Y and Wu B 2013 Phys. Rev. A 87 013614
|
[15] |
Gautam S and Adhikari S K 2015 Phys. Rev. A 91 063617
|
[16] |
Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
|
[17] |
Liu Y and Zhang S Y 2016 Chin. Phys. B 25 090304
|
[18] |
Ohberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
|
[19] |
Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J and Schmelcher P 2013 Europhys. Lett. 103 20002
|
[20] |
Kevrekidis P G, Susanto H, Carretero-González R, Malomed B A and Frantzeskakis D J 2005 Phys. Rev. E 72 066604
|
[21] |
Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
|
[22] |
Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
|
[23] |
Pérez-García V M and Beitia J B 2005 Phys. Rev. A 72 033620
|
[24] |
Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
|
[25] |
Kartashov Y V, Konotop V V and Abdullaev F K 2013 Phys. Rev. Lett. 111 060402
|
[26] |
Celik C and Duman M 2012 J. Comput. Phys. 231 1743
|
[27] |
Chiofalo M L, Succi S and Tosi M P 2000 Phys. Rev. E 62 7438
|
[28] |
Zhai H 2015 Rep. Prog. Phys. 78 026001
|
[29] |
Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
|
[30] |
Xu Y, Zhang Y and Zhang C 2015 Phys. Rev. A 92 013633
|
[31] |
He P B, Gu G N and Pan A L 2012 Eur. Phys. J. B 85 119
|
[32] |
He P B, Yan H, Cai M Q and Li Z D 2015 J. Appl. Phys. B 118 223901
|
[33] |
Zhang Y, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
|
[34] |
Gutohrlein R, Schnabel J, Iskandarov I, Cartarius H, Main J and Wunner G 2015 J. Phys. A:Math. Theor. 48 33
|
[35] |
Zhou Z, Zhong H H, Zhu B, Xiao F X, Zhu K and Tan J T 2016 Chin. Phys. Lett. 33 110301
|
[36] |
Newell A C 1987 Solitons in Mathematics and Physics (Philadelphia:Society for Industrial and Applied Mathematics)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|