Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 095202    DOI: 10.1088/1674-1056/26/9/095202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Rotation of a single vortex in dusty plasma

Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰)
Hebei Key Laboratory of Optic-electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  A single vortex is obtained in radio-frequency capacitive discharge in argon gas. The dust subsystem is confined in the horizontal plane with an asymmetrical saw structure placed on the lower electrode. The vortex rotates as a whole along the long side of the saw-teeth. Asymmetry of the saw structure plays an important role in the rotation of the vortex. Nonzero curl of the total force resulting from the local ion flow and the electric field in the plasma sheath could be attributed to the persistent rotation of vortex.
Keywords:  dusty plasma      vortex  
Received:  13 March 2017      Revised:  22 May 2017      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.27.Gr (Strongly-coupled plasmas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Program for Young Principal Investigators of Hebei Province, China,the Natural Science Foundation of Hebei University, China (Grant No. 2011JQ04), the NaturalScience Fund for Excellent Young Scholars of Hebei Province, China(Grant No. A2017201099), and the Midwest Universities Comprehensive Strength Promotion Project, China.
Corresponding Authors:  Ya-Feng He     E-mail:  heyf@hbu.edu.cn

Cite this article: 

Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰) Rotation of a single vortex in dusty plasma 2017 Chin. Phys. B 26 095202

[1] Morfill G E and Ivlev A V 2009 Rev. Mod. Phys. 81 1353
[2] Shukla P K and Eliasson B 2009 Rev. Mod. Phys. 81 25
[3] Hou L J, Wang Y N and Mišković Z L 2005 Phys. Plasmas 12 042104
[4] Bonitz M, Henning C and Block D 2010 Rep. Prog. Phys. 73 066501
[5] Chu J H and Lin I 1994 Phys. Rev. Lett. 72 4009
[6] Schwabe M, Zhdanov S, Räth C, Graves D B, Thoma M H and Morfill G E 2014 Phys. Rev. Lett. 112 115002
[7] Huang F, Ye M F and Wang L 2004 Chin. Sci. Bull. 49 2150
[8] Yan J, Feng F, Liu F C, Dong L F and He Y F 2016 Chin. Phys. B 25 095202
[9] Hartmann P, Kalman G J, Donkŗ Z and Kutasi K 2005 Phys. Rev. E 72 026409
[10] ChoudharyM, Mukherjee S and Bandyopadhyay P 2017 Phys. Plasmas 24 033703
[11] Zuzic M, Ivlev A V, Goree J, et al. 2000 Phys. Rev. Lett. 85 4064
[12] Robertson S, Gulbis A A S, Collwell J and Horanyi M 2003 Phys. Plasmas 10 3874
[13] Feng Y, Goree J and Liu B 2012 Phys. Rev. Lett. 109 185002
[14] Akdim M R and Goedheer W J 2003 Phys. Rev. E 67 056405
[15] Bockwoldt T, Oliver A, Kristoffer O M and Alexander P 2014 Phys. Plasmas 21 103703
[16] Morfill G E, Thomas H M, Konopka U, Rothermel H, Zuzic M, Ivlev A and Goree J 1999 Phys. Rev. Lett. 83 1598
[17] Law D A, Steel W H, Annaratone B M and Allen J E 1998 Phys. Rev. Lett. 80 4189
[18] Chai KB and Bellan P M 2016 Phys. Plasmas 23 023701
[19] Vaulina O S, Samarian A A, Petrov O F, James B W and Fortov V E 2003 New J. Phys. 5 82
[20] Mitic S, Sütterlin R, Ivlev AV,Höfner H, Thoma M H, Zhdanov S and Morfill G E 2008 Phys. Rev. Lett. 101 235001
[21] Kaur M, Bose S, Chattopadhyay P K, Sharma D, Ghosh J, Saxena Y C and Thomas Jr. E 2015 Phys. Plasmas 22 093702
[22] Sheridan T E 2009 J. Phys. D: Appl. Phys. 42 125212
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[9] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[14] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[15] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
No Suggested Reading articles found!