Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016301    DOI: 10.1088/1674-1056/25/1/016301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

Xiao-Jun Zhang(张晓军)1,2 and Chang-Le Chen(陈长乐)1
1. Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract  Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions Γ X, Γ M, and XM are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X and M by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals.
Keywords:  surface phonon dispersion      lattice relaxation      polarization      modified analytic embedded atom method  
Received:  21 May 2015      Revised:  22 August 2015      Accepted manuscript online: 
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  82.56.Na (Relaxation)  
  24.70.+s (Polarization phenomena in reactions)  
  12.39.Pn (Potential models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).
Corresponding Authors:  Chang-Le Chen     E-mail:  chenchl@nwpu.edu.cn

Cite this article: 

Xiao-Jun Zhang(张晓军) and Chang-Le Chen(陈长乐) Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study 2016 Chin. Phys. B 25 016301

[1] Kroes G J, Pavanello M, Rey M B, Alducin M and Auerbach D J 2014 J. Chem. Phys. 141 054705
[2] Nattino F, Genova A, Guijt M, Muzas A S, Diaz C and Auerbach D J 2014 J. Chem. Phys. 141 124705
[3] Zhu L L 2015 Chin. Phys. B 24 016201
[4] Liebhaber M, Bass U, Bayersdorfer P, Geurts J, Speiser E, Rathel J, Baumann A, Chandola S and Esser N 2014 Phys. Rev. B 89 045313
[5] Chen Y, Tong S Y, Bohnen K P, Rodach T and Ho K M 1993 Phys. Rev. Lett. 70 603
[6] Wilson R B and Riffe D M 2012 J. Phys.: Condens. Matter 24 335401
[7] Barreteau C, Raouafi F, Desjonqueeres M C and Spanjaard D 2002 Surf. Sci. 519 15
[8] Tamtogl A, Kraus P, Reinhartshuber M M, Campi D, Bernasconi M, Benedek G and Ernst W E 2013 Phys. Rev. B 87 035410
[9] Mohamed M H, Kesmodel L L, Hall B M and Mills D L 1988 Phys. Rev. B 37 2763
[10] Benedek G, Bernasconi M, Chis V, Chulkov E, Echenique P M, Hellsing B and Toennies J P 2010 J. Phys.: Condens. Matter 22 084020
[11] Yndurain F and Jigato M P 2008 Phys. Rev. Lett. 100 205501
[12] Luo N S and Xu W L 1989 Acta Phys. Sin. 38 900 (in Chinese)
[13] Joubert D P 1988 J. Physics C: Solid State Phys. 21 4233
[14] Popov V N and Alsenoy C V 2014 Phys. Rev. B 90 245429
[15] Ouyang Y F, Zhang B W, Liao S Z and Jin Z P 1996 Z. Phys. B 101 161
[16] Zhang B W, Ouyang Y F, Liao S Z and Jin Z P 1999 Phys. B 262 218
[17] Xie Y, Zhang J M and Ji V 2008 Solid State Commun. 145 182
[18] Xie Y and Zhang J M 2008 Can. J. Phys. 86 801
[19] Xiao S F and Hu W Y 2006 J. Cry. Growth 286 512
[20] Yang J Y and Hu W Y 2006 Appl. Surf. Sci. 252 4923
[21] Ao B Y, Xia J X, Chen P H, Hu W Y and Wang X L 2012 Chin. Phys. B 21 026103
[22] Zhang X J, Chen C L and Feng F L 2013 Chin. Phys. B 22 096301
[23] Hu W Y, Shu X L and Zhang B W 2002 Comp. Mater. Sci. 23 175
[24] Allen R E, Allredge G P and Wette F W 1971 Phys. Rev. B 4 1648
[25] Zi J, Zhang K M and Xie X D 1989 Acta Phys. Sin. 38 1475 (in Chinese)
[26] Li H, Quinn J, Li Y S, Tian D, Jona F and Marcus P M 1991 Phys. Rev. B 43 7305
[27] Foiles S N, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[28] Bunjes N, Luo N S, Ruggerone P, Toennies J P and Witte G 1994 Phys. Rev. B 50 8897
[29] Moretto P, Rocca M, Valbusa U and Black J 1990 Phys. Rev. B 41 12905
[30] Nelson J S, Sowa E C and Daw M S 1988 Phys. Rev. Lett. 61 1977
[31] Heid R and Bohnen K P 2003 Phys. Rep. 387 151
[32] Chen Y, Tong S Y, Kim J S, Kesmodel L L, Rodach T, Bohnen K P and Ho K M 1991 Phys. Rev. B 44 11394
[33] Yang L Q, Rahman T S and Daw M S 1991 Phys. Rev. B 44 13725
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[14] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!