CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants |
Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣) |
Department of Physics and Electronic Sciences, Hunan University of Arts and Science, Changde 415000, China |
|
|
Abstract We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density.
|
Received: 02 April 2017
Revised: 12 June 2017
Accepted manuscript online:
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104069). |
Corresponding Authors:
Chang-Sheng Li
E-mail: lcs135@163.com
|
Cite this article:
Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣) Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants 2017 Chin. Phys. B 26 097301
|
[1] |
Martinez A, Bescond M, Barker J R, Svizhenkov A, Anantram A, Millar C and Asenov A 2007 IEEE Trans. Electron Dev. 54 2213
|
[2] |
Markov S, Cheng B and Asenov A 2012 IEEE Electron Dev. Lett. 33 315
|
[3] |
Zhang L N, He J, Zhou W, Chen L and Xu Y W 2010 Chin. Phys. B 19 47306
|
[4] |
Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102
|
[5] |
Mayank C, Kinshuk G and Babu V G 2015 J. Nanosci. Nanoeng. Appl. 5 20
|
[6] |
Chen L, Cai F, Otuonye U and Lu W D 2016 Nano Lett. 16 420
|
[7] |
Seo J H, Yoon Y J, Lee S, Lee J H, Cho S and Kang I M 2015 Current Applied Physics 15 208
|
[8] |
Seoane N, Martinez A, Brown A R, Barker J R and Asenov A 2009 IEEE Trans. Electron Dev. 56 1388
|
[9] |
Martinez A, Seoane N, Brown A R, Barker J R and Asenov A 2009 IEEE Trans. Nanotechnol. 8 603
|
[10] |
Yoon J S, Rim T, Kim J, Kim K and Baek C K 2015 Appl. Phys. Lett. 106 103507
|
[11] |
Bagwell P F 1990 Phys. Rev. B 41 10354
|
[12] |
Kim C S, Satanin A M, Joe Y S and Cosby R M 1999 Phys. Rev. B 60 10962
|
[13] |
Bardarson J H, Magnusdottir I, Gudmundsdottir G, Tang C S, Manolescu A and Gudmundsson V 2004 Phys. Rev. B 70 245308
|
[14] |
Mondal P, Ghosh B, Bal P, Akram M W and Salimath A 2015 Appl. Phys. A 119 127
|
[15] |
Nayak K, Agarwal S and Bajaj M 2015 IEEE Trans. Electron Dev. 62 685
|
[16] |
Sylvia S S, Habib K M M, Khayer M A, Alam K, Neupane M and Lake R K 2014 IEEE Trans. Electron Dev. 61 2208
|
[17] |
Georgiev V P, Towie E and Asenov A 2013 IEEE Trans. Electron Dev. 60 965
|
[18] |
Arias T A, Payne M C and Joannopoulos J D 1992 Phys. Rev. Lett. 69 1077
|
[19] |
Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
|
[20] |
Kerker G P 1981 Phys. Rev. B 23 3082
|
[21] |
Tassone F, Mauri F and Car R 1994 Phys. Rev. B 50 10561
|
[22] |
David R, Canning A and Wang L 2001 Phys. Rev. B 64 121101
|
[23] |
Marks L D and Luke D R 2008 Phys. Rev. B 78 075114
|
[24] |
Manninen M T, Nieminen R M, Hautojarvi P and Arponen J S 1975 Phys. Rev. B 12 4012
|
[25] |
Shiihara Y, Kuwazuru O and Yoshikawa N 2008 Modelling and Simulation in Materials Science and Engineering 16 3
|
[26] |
Tan I H, Snider G L, Chang L D and Hu E L 1990 J. Appl. Phys. 68 4071
|
[27] |
Wang J, Rahman A, Ghosh A, Klimech G and Lundstrom M 2005 IEEE Trans. Electron Dev. 52 1589
|
[28] |
Bescond M, Autran J L, Munteanu D and Lannoo M 2004 Solid-State Electron 48 567
|
[29] |
Jin S, Tang T W and Fischetti M V 2008 IEEE Trans. Electron Dev. 55 727
|
[30] |
Bescond M, lannoo M, Raymond L and Michelini F 2010 J. Appl. Phys. 107 093703
|
[31] |
Nehari K, Cavassilas N, Michelini F, Bescond M, Autran J L and Lannoo M 2007 Appl. Phys. Lett. 90 132112
|
[32] |
Carrillo N H, Bescond M, Cavassilas N, Dib E and Lannoo M 2014 J. Appl. Phys. 116 164505
|
[33] |
Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) p. 300
|
[34] |
Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|