Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097301    DOI: 10.1088/1674-1056/26/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants

Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣)
Department of Physics and Electronic Sciences, Hunan University of Arts and Science, Changde 415000, China
Abstract  We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density.
Keywords:  electron transport      nanowire transistor      non-equilibrium Green's function      dopant  
Received:  02 April 2017      Revised:  12 June 2017      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104069).
Corresponding Authors:  Chang-Sheng Li     E-mail:  lcs135@163.com

Cite this article: 

Chang-Sheng Li(李长生), Lei Ma(马磊), Jie-Rong Guo(郭杰荣) Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants 2017 Chin. Phys. B 26 097301

[1] Martinez A, Bescond M, Barker J R, Svizhenkov A, Anantram A, Millar C and Asenov A 2007 IEEE Trans. Electron Dev. 54 2213
[2] Markov S, Cheng B and Asenov A 2012 IEEE Electron Dev. Lett. 33 315
[3] Zhang L N, He J, Zhou W, Chen L and Xu Y W 2010 Chin. Phys. B 19 47306
[4] Liu Y, He J, Chan M, Du C X, Ye Y, Zhao W, Wu W, Deng W L and Wang W P 2014 Chin. Phys. B 23 097102
[5] Mayank C, Kinshuk G and Babu V G 2015 J. Nanosci. Nanoeng. Appl. 5 20
[6] Chen L, Cai F, Otuonye U and Lu W D 2016 Nano Lett. 16 420
[7] Seo J H, Yoon Y J, Lee S, Lee J H, Cho S and Kang I M 2015 Current Applied Physics 15 208
[8] Seoane N, Martinez A, Brown A R, Barker J R and Asenov A 2009 IEEE Trans. Electron Dev. 56 1388
[9] Martinez A, Seoane N, Brown A R, Barker J R and Asenov A 2009 IEEE Trans. Nanotechnol. 8 603
[10] Yoon J S, Rim T, Kim J, Kim K and Baek C K 2015 Appl. Phys. Lett. 106 103507
[11] Bagwell P F 1990 Phys. Rev. B 41 10354
[12] Kim C S, Satanin A M, Joe Y S and Cosby R M 1999 Phys. Rev. B 60 10962
[13] Bardarson J H, Magnusdottir I, Gudmundsdottir G, Tang C S, Manolescu A and Gudmundsson V 2004 Phys. Rev. B 70 245308
[14] Mondal P, Ghosh B, Bal P, Akram M W and Salimath A 2015 Appl. Phys. A 119 127
[15] Nayak K, Agarwal S and Bajaj M 2015 IEEE Trans. Electron Dev. 62 685
[16] Sylvia S S, Habib K M M, Khayer M A, Alam K, Neupane M and Lake R K 2014 IEEE Trans. Electron Dev. 61 2208
[17] Georgiev V P, Towie E and Asenov A 2013 IEEE Trans. Electron Dev. 60 965
[18] Arias T A, Payne M C and Joannopoulos J D 1992 Phys. Rev. Lett. 69 1077
[19] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[20] Kerker G P 1981 Phys. Rev. B 23 3082
[21] Tassone F, Mauri F and Car R 1994 Phys. Rev. B 50 10561
[22] David R, Canning A and Wang L 2001 Phys. Rev. B 64 121101
[23] Marks L D and Luke D R 2008 Phys. Rev. B 78 075114
[24] Manninen M T, Nieminen R M, Hautojarvi P and Arponen J S 1975 Phys. Rev. B 12 4012
[25] Shiihara Y, Kuwazuru O and Yoshikawa N 2008 Modelling and Simulation in Materials Science and Engineering 16 3
[26] Tan I H, Snider G L, Chang L D and Hu E L 1990 J. Appl. Phys. 68 4071
[27] Wang J, Rahman A, Ghosh A, Klimech G and Lundstrom M 2005 IEEE Trans. Electron Dev. 52 1589
[28] Bescond M, Autran J L, Munteanu D and Lannoo M 2004 Solid-State Electron 48 567
[29] Jin S, Tang T W and Fischetti M V 2008 IEEE Trans. Electron Dev. 55 727
[30] Bescond M, lannoo M, Raymond L and Michelini F 2010 J. Appl. Phys. 107 093703
[31] Nehari K, Cavassilas N, Michelini F, Bescond M, Autran J L and Lannoo M 2007 Appl. Phys. Lett. 90 132112
[32] Carrillo N H, Bescond M, Cavassilas N, Dib E and Lannoo M 2014 J. Appl. Phys. 116 164505
[33] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) p. 300
[34] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[1] Radiation resistance property of barium gallo-germanate glass doped by Nb2O5
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民). Chin. Phys. B, 2022, 31(2): 027801.
[2] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[3] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[4] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[5] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[6] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[7] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[8] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
[9] Single-electron transport through single and coupling dopant atoms in silicon junctionless nanowire transistor
Xiao-Di Zhang(张晓迪), Wei-Hua Han(韩伟华), Wen Liu(刘雯), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Chong Yang(杨冲), Jun-Dong Chen(陈俊东), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(12): 127302.
[10] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[11] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
[12] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[13] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[14] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[15] Improvement of electro-optic performances in white organic light emitting diodes with color stability by buffer layer and multiple dopants structure
Zhi-Qi Kou(寇志起), Yu Tang(唐宇), Li-Ping Yang(杨丽萍), Fei-Yu Yang(杨飞宇), Wen-Jun Guo(郭文军). Chin. Phys. B, 2018, 27(10): 107801.
No Suggested Reading articles found!