CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors |
Yang-Yan Guo(郭仰岩)1,2, Wei-Hua Han(韩伟华)1,2, Xiao-Song Zhao(赵晓松)1,2, Ya-Mei Dou(窦亚梅)1,2, Xiao-Di Zhang(张晓迪)1,2, Xin-Yu Wu(吴歆宇)1,2, Fu-Hua Yang(杨富华)1,2,3 |
1 Engineering Research Center for Semiconductor Integrated Technology & Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics. There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data, which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.
|
Received: 12 June 2019
Revised: 14 August 2019
Accepted manuscript online:
|
PACS:
|
73.63.Kv
|
(Quantum dots)
|
|
72.20.Ee
|
(Mobility edges; hopping transport)
|
|
71.23.An
|
(Theories and models; localized states)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0200503) and the National Natural Science Foundation of China (Grant No. 61327813). |
Corresponding Authors:
Wei-Hua Han
E-mail: weihua@semi.ac.cn
|
Cite this article:
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华) Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors 2019 Chin. Phys. B 28 107303
|
[1] |
Samanta A, Muruganathan M, Hori M, Ono Y, Mizuta H, Tabe M and Moraru D 2017 Appl. Phys. Lett. 110 093107
|
[2] |
Jehl X, Niquet Y M and Sanquer M 2016 J. Physics.: Condens. Matter 28 103001
|
[3] |
Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
|
[4] |
Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
|
[5] |
Moraru D, Udhiarto A, Anwar M, Nowak R, Jablonski R, Hamid E, Tarido J C, Mizuno T and Tabe M 2011 Nanoscale Research Letters 6 479
|
[6] |
Dagesyan S A, Shorokhov V V, Presnov D E, Soldatov E S, Trifonov A S and Krupenin V A 2017 Nanotechnol. 28 225304
|
[7] |
Uddin W, Georgiev Y M, Maity S and Das S 2017 J. Phys. D: Appl. Phys. 50 365104
|
[8] |
Enrico Prati M H, Filippo Guagliardo, Giorgio Ferrari and Takahiro Shinada 2012 Nat. Nanotechnol. 7 443
|
[9] |
Hamid E, Moraru D, Tarido J C, Miki S, Mizuno T and Tabe M 2010 Appl. Phys. Lett. 97 262101
|
[10] |
Hori M, Shinada T, Ono Y, Komatsubara A, Kumagai K, Tanii T, Endoh T and Ohdomari I 2011 Appl. Phys. Lett. 99 062103
|
[11] |
Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
|
[12] |
Tabe M, Moraru D, Ligowski M, Anwar M, Yokoi K, Jablonski R and Mizuno T 2010 Thin Solid Films 518 S38
|
[13] |
Wang H, Han W, Ma L, Li X, Hong W and Yang F 2014 Appl. Phys. Lett. 104 133509
|
[14] |
Su L N, Lv L, Li X X, Qin H and Gu X F 2015 Chin. Phys. Lett. 32 047301
|
[15] |
Rueß F J, Micolich A P, Pok W, Goh K E J, Hamilton A R and Simmons M Y 2008 Appl. Phys. Lett. 92 052101
|
[16] |
Pichon L, Jacques E, Rogel R, Salaun A C and Demami F 2013 Semicond. Sci. Technol. 28 025002
|
[17] |
Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
|
[18] |
Ma L, Han W, Wang H, Hong W, Lyu Q, Yang X and Yang F 2015 J. Appl. Phys. 117 034505
|
[19] |
Wang H, Han W, Li X, Zhang Y and Yang F 2014 J. Appl. Phys. 116 124505
|
[20] |
Barrett C, Lederer D, Redmond G, Xiong W, Colinge J P and Quinn A J 2010 Solid-State Electron. 54 1273
|
[21] |
Shlimak I 2015 Is Hopping A Science (Singapore: World Scientific) p. 25
|
[22] |
M F Kaveh N F M 1983 Philos. Mag. B 47 577
|
[23] |
Boris I and Shklovskii A L E 1984 Electronic Properties of Doped Semiconductors (Berlin: Springer-Verlag) p. 191
|
[24] |
Efros A L and Shklovskii B I 1975 Journal of Physics C: Solid State Physics 8 L49
|
[25] |
Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642
|
[26] |
Yu D, Wang C, Wehrenberg B L and Guyot-Sionnest P 2004 Phys. Rev. Lett. 92 216802
|
[27] |
Ma L H, Han W H, Wang H, Yang X and Yang A F 2015 IEEE Trans. Elec. Dev 36 941
|
[28] |
Je M, Han S, Kim I and Shin H 2000 Solid-State Electron. 40 2207
|
[29] |
Zhao X H, Guo Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 097310
|
[30] |
Li X, Han W, Wang H, Ma L, Zhang Y, Du Y and Yang F 2013 Appl. Phys. Lett. 102 223507
|
[31] |
Wang W, Xu G, Chowdhury M D H, Wang H, Um J K, Ji Z, Gao N, Zong Z, Bi C, Lu C, Lu N, Banerjee W, Feng J, Li L, Kadashchuk A, Jang J and Liu M 2018 Phys. Rev. B 98 245308
|
[32] |
Mott N F 1969 Philos. Mag. 19 835
|
[33] |
Zhang Y, Dai O, Levy M and Sarachik M P 1990 Phys. Rev. Lett. 64 2687
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|