Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 075203    DOI: 10.1088/1674-1056/26/7/075203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics

Zhen-Hua Bi(毕振华)1, Yi Hong(洪义)1, Guang-Jiu Lei(雷光玖)2, Shuai Wang(王帅)3, You-Nian Wang(王友年)4, Dong-Ping Liu(刘东平)1
1 Liaoning Key Laboratory of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China;
2 Southwestern Institute of Physics, Chengdu 610041, China;
3 Physics Department, School of Science, Northeastern University, Shenyang 110819, China;
4 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  A high-density RF ion source is an essential part of a neutral beam injector. In this study, the authors attempt to retrofit an original regular RF ion source reactor by inserting a thin dielectric tube through the symmetric axis of the discharge chamber. With the aid of this inner tube, the reactor is capable of generating a radial magnetic field instead of the original transverse magnetic field, which solves the E×B drift problem in the current RF ion source structure. To study the disturbance of the dielectric tube, a fluid model is introduced to study the plasma parameters with or without the internal dielectric tube, based on the inductively coupled plasma (ICP) reactor. The simulation results show that while introducing the internal dielectric tube into the ICP reactor, both the plasma density and plasma potential have minor influence during the discharge process, and there is good uniformity at the extraction region. The influence of the control parameters reveals that the plasma densities at the extraction region decrease first and subsequently slow down while enhancing the diffusion region.
Keywords:  neutral beam ion source      inductively coupled plasma (ICP)      fluid model  
Received:  30 November 2016      Revised:  13 March 2017      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.50.Dg (Plasma sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11305028,11305032,and 11320101005).
Corresponding Authors:  Dong-Ping Liu     E-mail:  dongping.liu@dlnu.edu.cn

Cite this article: 

Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平) Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics 2017 Chin. Phys. B 26 075203

[1] Hemsworth R, Decamps H, Graceffa J, Schunke B, Tanaka M, Dremel M, Tanga A, DeEsch H P L, Geli F, Milnes J, Inoue T, Marcuzzi D, Sonato P and Zaccaria P 2009 Nucl. Fusion 49 045006
[2] Hu C D, Xu Y J, Xie Y L, Liu S, Liu Z M, Sheng P, Xie Y H and Liang L Z 2015 Chin. Phys. Lett. 32 052901
[3] Cao J Y, Wei H L, Zou G Q, Liu H, Lei G J, Zhang X M, Yang X F, Yu L M, Jiang T, Jiang S F and Rao J 2013 Fusion Eng. Des. 88 872
[4] Hemsworth R S, Tanga A and Antoni V 2008 Rev. Sci. Instrum. 79 02C109
[5] Hemsworth R S and Inoue T 2005 IEEE Trans. Plasma Sci. 33 1799
[6] Fantz U, Franzen P, Kraus W, Berger M, Christ-Koch S, Fröschle M, Gutser R, Heinemann B, Martens C, McNeely P, Riedl R, Speth E and Wünderlich D 2007 Plasma Phys. Control. Fusion 49 B563
[7] Speth E, Falter H D, Franzen P, Fantz U, Bandyopadhyay M, Christ S, Encheva A, Fröschle M, Holtum D, Heinemann B, Kraus W, Lorenz A, Martens Ch, McNeely P, Obermayer S, Riedl R, Süss R, Tanga A, Wilhelm R and Wünderlich D 2006 Nucl. Fusion 46 S220
[8] Hagelaar G J M and Oudini N 2011 Plasma Phys. Control. Fusion 53 124032
[9] Boeuf J P, Hagelaar G J M, Sarrailh P, Fubiani G and Kohen N 2011 Plasma Sources Sci. Technol. 20 015002
[10] Fubiani G and Boeuf J P 2014 Phys. Plasmas 21 073512
[11] Gaboriau F, Baude R and Hagelaar G J M 2014 Appl. Phys. Lett. 104 214107
[12] Schiesko L, Franzen P and Fantz U 2012 Plasma Sources Sci. Technol. 21 065007
[13] Ventzek P L G, Grapperhaus M and Kushner M J 1994 J. Vac. Sci. Technol. B 12 3118
[14] Arancibia Monreal J, Chabert P and Godyak V 2013 Phys. Plasmas 20 103504
[15] Song S H, Yang Y, Chabert P and Kushner M J 2014 Phys. Plasmas 21 093512
[16] Bi Z H, Dai Z L, Zhang Y R, Liu D P and Wang Y N 2013 Plasma Sources Sci. Technol. 22 055007
[17] Morgan W L Kinema Research and Software, LXcat database
[18] Van Laer K and Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015002
[19] Hagelaar G J M, Fubiani G and Boeuf J P 2011 Plasma Sources Sci. Technol. 20 015001
[20] Ventzek P L G, Hoekstra R J and Kushner M J 1994 J. Vac. Sci. Technol. B 12 461
[21] Stewart R A, Vitello P and Graves D B 1994 J. Vac. Sci. Technol. B 12 478
[22] Zhang Y R, Gao F, Li X C, Bogaerts A and Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303
[23] Bi Z H, Dai Z L, Xu X, Li Z C and Wang Y N 2009 Phys. Plasmas 16 043510
[24] Xu H J, Zhao S X, Gao F, Zhang Y R, Li X C and Wang Y N 2015 Chin. Phys. B 24 115201
[25] Hebner G A 1996 J. Appl. Phys. 80 2624
[26] Franzen P, Falter H, Heinemann B, Martens Ch, Fantz U, Berger M, Christ-Koch S, Fröschle M, Holtum D, Kraus W, Leyer S, McNeely P, Riedl R, Süss R, Obermayer S, Speth E and Wünderlich D 2007 Fusion Eng. Des. 82 407
[1] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[2] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[3] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[4] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[5] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[6] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[7] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[8] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[9] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[10] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
[11] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[12] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[13] A computational modeling study on the helium atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125202.
[14] Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure
Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏). Chin. Phys. B, 2015, 24(10): 105102.
[15] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
No Suggested Reading articles found!