PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics |
Zhen-Hua Bi(毕振华)1, Yi Hong(洪义)1, Guang-Jiu Lei(雷光玖)2, Shuai Wang(王帅)3, You-Nian Wang(王友年)4, Dong-Ping Liu(刘东平)1 |
1 Liaoning Key Laboratory of Optoelectronic Films & Materials, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China; 2 Southwestern Institute of Physics, Chengdu 610041, China; 3 Physics Department, School of Science, Northeastern University, Shenyang 110819, China; 4 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract A high-density RF ion source is an essential part of a neutral beam injector. In this study, the authors attempt to retrofit an original regular RF ion source reactor by inserting a thin dielectric tube through the symmetric axis of the discharge chamber. With the aid of this inner tube, the reactor is capable of generating a radial magnetic field instead of the original transverse magnetic field, which solves the E×B drift problem in the current RF ion source structure. To study the disturbance of the dielectric tube, a fluid model is introduced to study the plasma parameters with or without the internal dielectric tube, based on the inductively coupled plasma (ICP) reactor. The simulation results show that while introducing the internal dielectric tube into the ICP reactor, both the plasma density and plasma potential have minor influence during the discharge process, and there is good uniformity at the extraction region. The influence of the control parameters reveals that the plasma densities at the extraction region decrease first and subsequently slow down while enhancing the diffusion region.
|
Received: 30 November 2016
Revised: 13 March 2017
Accepted manuscript online:
|
PACS:
|
52.65.-y
|
(Plasma simulation)
|
|
52.50.Dg
|
(Plasma sources)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11305028,11305032,and 11320101005). |
Corresponding Authors:
Dong-Ping Liu
E-mail: dongping.liu@dlnu.edu.cn
|
Cite this article:
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平) Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics 2017 Chin. Phys. B 26 075203
|
[1] |
Hemsworth R, Decamps H, Graceffa J, Schunke B, Tanaka M, Dremel M, Tanga A, DeEsch H P L, Geli F, Milnes J, Inoue T, Marcuzzi D, Sonato P and Zaccaria P 2009 Nucl. Fusion 49 045006
|
[2] |
Hu C D, Xu Y J, Xie Y L, Liu S, Liu Z M, Sheng P, Xie Y H and Liang L Z 2015 Chin. Phys. Lett. 32 052901
|
[3] |
Cao J Y, Wei H L, Zou G Q, Liu H, Lei G J, Zhang X M, Yang X F, Yu L M, Jiang T, Jiang S F and Rao J 2013 Fusion Eng. Des. 88 872
|
[4] |
Hemsworth R S, Tanga A and Antoni V 2008 Rev. Sci. Instrum. 79 02C109
|
[5] |
Hemsworth R S and Inoue T 2005 IEEE Trans. Plasma Sci. 33 1799
|
[6] |
Fantz U, Franzen P, Kraus W, Berger M, Christ-Koch S, Fröschle M, Gutser R, Heinemann B, Martens C, McNeely P, Riedl R, Speth E and Wünderlich D 2007 Plasma Phys. Control. Fusion 49 B563
|
[7] |
Speth E, Falter H D, Franzen P, Fantz U, Bandyopadhyay M, Christ S, Encheva A, Fröschle M, Holtum D, Heinemann B, Kraus W, Lorenz A, Martens Ch, McNeely P, Obermayer S, Riedl R, Süss R, Tanga A, Wilhelm R and Wünderlich D 2006 Nucl. Fusion 46 S220
|
[8] |
Hagelaar G J M and Oudini N 2011 Plasma Phys. Control. Fusion 53 124032
|
[9] |
Boeuf J P, Hagelaar G J M, Sarrailh P, Fubiani G and Kohen N 2011 Plasma Sources Sci. Technol. 20 015002
|
[10] |
Fubiani G and Boeuf J P 2014 Phys. Plasmas 21 073512
|
[11] |
Gaboriau F, Baude R and Hagelaar G J M 2014 Appl. Phys. Lett. 104 214107
|
[12] |
Schiesko L, Franzen P and Fantz U 2012 Plasma Sources Sci. Technol. 21 065007
|
[13] |
Ventzek P L G, Grapperhaus M and Kushner M J 1994 J. Vac. Sci. Technol. B 12 3118
|
[14] |
Arancibia Monreal J, Chabert P and Godyak V 2013 Phys. Plasmas 20 103504
|
[15] |
Song S H, Yang Y, Chabert P and Kushner M J 2014 Phys. Plasmas 21 093512
|
[16] |
Bi Z H, Dai Z L, Zhang Y R, Liu D P and Wang Y N 2013 Plasma Sources Sci. Technol. 22 055007
|
[17] |
Morgan W L Kinema Research and Software, LXcat database
|
[18] |
Van Laer K and Bogaerts A 2016 Plasma Sources Sci. Technol. 25 015002
|
[19] |
Hagelaar G J M, Fubiani G and Boeuf J P 2011 Plasma Sources Sci. Technol. 20 015001
|
[20] |
Ventzek P L G, Hoekstra R J and Kushner M J 1994 J. Vac. Sci. Technol. B 12 461
|
[21] |
Stewart R A, Vitello P and Graves D B 1994 J. Vac. Sci. Technol. B 12 478
|
[22] |
Zhang Y R, Gao F, Li X C, Bogaerts A and Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303
|
[23] |
Bi Z H, Dai Z L, Xu X, Li Z C and Wang Y N 2009 Phys. Plasmas 16 043510
|
[24] |
Xu H J, Zhao S X, Gao F, Zhang Y R, Li X C and Wang Y N 2015 Chin. Phys. B 24 115201
|
[25] |
Hebner G A 1996 J. Appl. Phys. 80 2624
|
[26] |
Franzen P, Falter H, Heinemann B, Martens Ch, Fantz U, Berger M, Christ-Koch S, Fröschle M, Holtum D, Kraus W, Leyer S, McNeely P, Riedl R, Süss R, Obermayer S, Speth E and Wünderlich D 2007 Fusion Eng. Des. 82 407
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|