Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 075202    DOI: 10.1088/1674-1056/26/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas

Xue Yang(杨学)1,2, De-Long Xiao(肖德龙)1, Ning Ding(丁宁)1, Jie Liu(刘杰)1,3
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Graduate School, China Academy of Engineering Physics, Beijing 100088, China;
3 HEDPS, CAPT, and CICIFSA MoE, Peking University, Beijing 100871, China
Abstract  In this paper, the characteristics of magneto-Rayleigh–Taylor (MRT) instability of liner plasmas in MagLIF is theoretically investigated. A three-region slab model, based on ideal MHD equations, is used to derive the dispersion relation of MRT instability. The effect of compressibility on the development of MRT instability is specially examined. It is shown that the growth rate of MRT instability in compressible condition is generally lower than that in incompressible condition in the presence of magnetic field. In the case of zero magnetic field, the growth rate in compressible assumption is approximately the same as that in incompressible assumption. Generally, MRT instability in (x,y) plane can be remarkably mitigated due to the presence of magnetic field especially for short-wavelength perturbations. Perturbations may be nearly completely mitigated when the magnetic field is increased to over 1000 T during liner implosions. The feedthrough of MRT instability in liner outer surface on inner surface is also discussed.
Keywords:  magneto-Rayleigh–Taylor (MRT) instability      magnetized liner inertial fusion (MagLIF)      Z-pinch      compressibility  
Received:  17 January 2017      Revised:  07 April 2017      Accepted manuscript online: 
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  52.55.Tn (Ideal and resistive MHD modes; kinetic modes)  
  52.58.Lq (Z-pinches, plasma focus, and other pinch devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11475027,11274051,11105017,and 11275030) and the National Basic Research Program of China (Grants No.2013CB834100).
Corresponding Authors:  De-Long Xiao     E-mail:  xiao_delong@iapcm.ac.cn

Cite this article: 

Xue Yang(杨学), De-Long Xiao(肖德龙), Ning Ding(丁宁), Jie Liu(刘杰) Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas 2017 Chin. Phys. B 26 075202

[1] Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang C R, Peterson K J and Cuneo M E 2010 Phys. Plasmas 17 056303
[2] Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Sinars D B, Slutz S A, Owen A C, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Robertson G K, Rochau G A, Savage M E, Schroen D G and Stygar W A 2014 Phys. Plasmas 21 056303
[3] Slutz S A and Vesey R A 2012 Phys. Rve. Lett. 108 025003
[4] Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Jennings C A, CHittenden J P, Velikovich A L, Peterson K J, Vesey R A, Nakhleh C, Waisman E M, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T and Porter J L 2011 Phys. Plasmas 18 056301
[5] Ryutov D D, Cuneo M E, Herrmann M C, Sinars D B and Slutz S A 2012 Phys. Plasmas 19 062706
[6] Zhang Y and Ding Ning 2005 Acta Phys. Sin. 55 2333 (in Chinese)
[7] Ding Ning, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J and W J G 2016 Matter and Radiation at Extremes 1 135
[8] Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Slutz S A, Cuneo M E, Owen A C, Sinars D B, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Nakhleh C, Robertson G K, Rochau G A, Savage M E, Schroen D G and Stygar W A 2013 Phys. Rev. Lett. 111 235005
[9] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London:Oxford University) Chap. VIII, p. 429
[10] Harris E G 1962 Phys. Fluids 5 1057
[11] Yang B L, Wang L F, Ye W H and Xue C 2011 Phys. Plasmas 18 072111
[12] Zhang W L, Wu Z W and Li D 2005 Phys. Plasmas 12 042106
[13] Bud'ko A B, Felber F S, Kleev A I, Liberman M A and Velikovich A L 1989 Phys. Fluids B 1 598
[14] Bellan P M 2006 Fundamentals of Plasma Physics (Cambrige:Cambrige University Press)
[15] Lau Y Y, Zier J C, Rittersdorf I M, Weis M R and Gilgenbach R M 2011 Phys. Rev. E 83 066405
[16] Zhang P, Lau Y Y, Rittersdorf I M, Weis M R, Gilgenbach R M, Chalenski D and Slutz S A 2012 Phys. Plasmas 19 022703
[17] Amendt P, Colvin J D, Ramshaw J D, Robey H F and Landen O L 2003 Phys. Plasmas 10 820
[18] Ryutov D D and Dorf M A 2014 Phys. Plasmas 21 112704
[19] Velikovich A L and Schmit P F 2015 Phys. Plasmas 22 122711
[20] Schmit P F, Velikovich A L, McBride R D and Robertson G K 2016 Phys. Rev. Lett. 117 205001
[21] Weis M R, Zhang P, Lau Y Y, Rittersdorf I M, Zier J C, Gilgenbach R M, Hess M H and Peterson K J 2014 Phys. Plasmas 21 122708
[22] Livescu D 2004 Phys. Fluids 16 118
[23] Gomez M R, Slutz S A, Sefkow A B, Sinars D B, Hahn K D, Hansen S B, Harding E C, Knapp P F, Schmit P F, Jennings C A, Geissel T J, Rovang D C, Chandler G A, Cooper G W, Cuneo M E, HaveyThompson A J, Herrmann M C, Hess M H, Johns O, Lamppa D C, Martin M R, McBride R D, Peterson K J, Porter J L, Robertson G K, Rochau G A, Ruiz C L, Savage M E, Smith I C, Stygar W A and Vesey R A 2014 Phys. Rev. Lett. 113 155003
[24] Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T and Porter J L 2010 Phys. Rev. Lett. 105 185001
[1] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[2] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[3] Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum
Shi-Jia Chen(陈诗佳), Yan-Yun Ma(马燕云), Fu-Yuan Wu(吴福源), Xiao-Hu Yang(杨晓虎), Yun Yuan(袁赟), Ye Cui(崔野), and Rafael Ramis. Chin. Phys. B, 2021, 30(11): 115201.
[4] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[5] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[6] Analytical studies on the evolution processes of rarefied deuterium plasma shell Z-pinch by PIC and MHD simulations
Cheng Ning(宁成), Xiao-Qiang Zhang(张小强), Yang Zhang(张扬), Shun-Kai Sun(孙顺凯), Chuang Xue(薛创), Zhi-Xing Feng(丰志兴), Bai-Wen Li(李百文). Chin. Phys. B, 2018, 27(2): 025207.
[7] Pressure-induced structural evolution of apatite-type La9.33Si6O26
Guangchao Yin(尹广超), Hong Yin(殷红), Meiling Sun(孙美玲), Wei Gao(高伟). Chin. Phys. B, 2018, 27(1): 018202.
[8] Negative linear compressibility of generic rotating rigid triangles
Xiao-Qin Zhou(周晓勤), Lei Zhang(张磊), Lu Yang(杨璐). Chin. Phys. B, 2017, 26(12): 126201.
[9] End-on x-ray backlighting experiments for axial diagnostics of wire-array Z-pinch plasma on PPG-1
Shen Zhao(赵屾), Xinlei Zhu(朱鑫磊), Huantong Shi(石桓通), Xiaobing Zou(邹晓兵), Xinxin Wang(王新新). Chin. Phys. B, 2017, 26(1): 015206.
[10] Determining resistance of X-pinch plasma
Zhao Shen (赵屾), Xue Chuang (薛创), Zhu Xin-Lei (朱鑫磊), Zhang Ran (张然), Luo Hai-Yun (罗海云), Zou Xiao-Bing (邹晓兵), Wang Xin-Xin (王新新), Ning Cheng (宁成), Ding Ning (丁宁), Shu Xiao-Jian (束小建). Chin. Phys. B, 2013, 22(4): 045205.
[11] Relation between Tolman length and isothermal compressibility for simple liquids
Wang Xiao-Song (王小松), Zhu Ru-Zeng (朱如曾). Chin. Phys. B, 2013, 22(3): 036801.
[12] Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator
Huang Xian-Bin(黄显宾), Yang Li-Bing(杨礼兵), Li Jing(李晶), Zhou Shao-Tong(周少彤), Ren Xiao-Dong(任晓东), Zhang Si-Qun(张思群), Dan Jia-Kun(但加坤), Cai Hong-Chun(蔡红春), Duan Shu-Chao(段书超) , Chen Guang-Hua(陈光华), Zhang Zheng-Wei(章征伟), Ouyang Kai(欧阳凯), Jun Li(李军), Zhang Zhao-Hui(张朝辉), Zhou Rong-Guo(周荣国), and Wang Gui-Lin(王贵林) . Chin. Phys. B, 2012, 21(5): 055206.
[13] Spatially-resolved spectroscopic diagnosing of aluminum wire array Z-pinch plasmas on QiangGuang-I facility
Ye Fan (叶凡), Li Zheng-Hong (李正宏), Qin Yi (秦义), Jiang Shu-Qing (蒋树庆), Xue Fei-Biao (薛飞彪), Yang Jian-Lun (杨建伦), Xu Rong-Kun (徐荣昆), Jin Yong-Jie (金永杰). Chin. Phys. B, 2010, 19(7): 075204.
[14] X-ray backlighting of two-wire Z-pinch plasma using X-pinch
Zhao Tong (赵彤), Zou Xiao-Bing (邹晓兵), Zhang Ran (张然), Wang Xin-Xin (王新新). Chin. Phys. B, 2010, 19(7): 075205.
[15] Analysis of equation of state and thermodynamic functions for trans-decahydronaphthalene up to 200 MPa and 446 K
Li Ming(李明), Chen Cui-Ling(陈翠玲), Sun Jiu-Xun(孙久勋), Tian Rong-Gang(田荣刚), and Xiao Jian-Rong(肖剑荣). Chin. Phys. B, 2009, 18(9): 3795-3801.
No Suggested Reading articles found!