Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077804    DOI: 10.1088/1674-1056/26/7/077804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Guided mode resonance in planar metamaterials consistingof two ring resonators with different sizes

Zhen Yu(俞禛), Hang Che(陈航), Jianjun Liu(刘建军), Xufeng Jing(井绪峰), Xiangjun Li(李向军), Zhi Hong(洪治)
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  We proposed and experimentally investigated a two-ring-resonator composed planar hybrid metamaterial (MM), in which the spectra of guided mode resonance (GMR) and Fano resonance or EIT-like response induced by coherent interaction between MM resonance and GMR can be easily controlled by the size of the two rings in the terahertz regime. Furthermore, a four-ring-resonator composed MM for polarization-insensitive GMRs was demonstrated, where GMRs of both TE and TM modes are physically attributed to the diffraction coupling by two ±45° tilting gratings. Such kind of device has great potential in ultra-sensitive label-free sensors, filters, or slow light based devices.
Keywords:  metamaterials      terahertz      guided mode resonance  
Received:  19 January 2017      Revised:  09 March 2017      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.79.Dj (Gratings)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61377108 and 61405182).
Corresponding Authors:  Zhi Hong     E-mail:  hongzhi@cjlu.edu.cn

Cite this article: 

Zhen Yu(俞禛), Hang Che(陈航), Jianjun Liu(刘建军), Xufeng Jing(井绪峰), Xiangjun Li(李向军), Zhi Hong(洪治) Guided mode resonance in planar metamaterials consistingof two ring resonators with different sizes 2017 Chin. Phys. B 26 077804

[1] Wang S S, Moharam M G, Magnusson R and Bagby J S 1990 J. Opt. Soc. Am. A 7 1470
[2] Magnusson R and Wang S S 1992 Appl. Phys. Lett. 61 1022
[3] Park C H, Yoon Y T and Lee S S 2012 Opt. Express 20 23769
[4] Sakat E, Vincent G, Ghenuche P, Bardou N, Dupuis C, Collin S, Pardo F, Haidar R and Pelouard J 2012 Opt. Express 20 13082
[5] Kaplan A F, Xu T and Guo L J 2011 Appl. Phys. Lett. 99 143111
[6] Sakat E, Vincent G, Ghenuche P, Bardou N, Collin S, Pardo F, Pelouard J and Haidar R 2011 Opt. Lett. 36 3054
[7] Lee S G, Jung S Y, Kim H S, Lee S and Park J M 2015 Opt. Lett. 40 4241
[8] Song S, Sun F, Chen Q and Zhang Y 2015 IEEE Trans. THz Sci. Technol. 5 131
[9] Ding Y and Magnusson R 2004 Opt. Express 12 1885
[10] Liu W, Li Y, Jiang H, Lai Z and Chen H 2013 Opt. Lett. 38 163
[11] Boltasseva A and Atwater H A 2011 Science 331 290
[12] Cao W, Singh R, Al-Naib I, He M, Taylor A J and Zhang W 2012 Opt. Lett. 37 3366
[13] Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N and Zhelude N I 2007 Phys. Rev. Lett. 99 147401
[14] Al-Naib I, Singh R, Rockstuhl C, Lederer F, Delprat S, Rocheleau D, Chaker M, Ozaki T and Morandotti R 2012 Appl. Phys. Lett. 101 071108
[15] Al-Naib I, Jansen C, Singh R, Walther M and Koch M 2013 IEEE Trans. THz Sci. Technol. 3 772
[16] Ai-Naib I, Hebestreit E, Rockstuhl C, Lederer F, Christodoulides D, Ozaki T and Morandotti R 2014 Phys. Rev. Lett. 112 183903
[17] Ai-Naib I, Yang Y, Dignam M M, Zhang W and Singh R 2015 Appl. Phys. Lett. 106 011102
[18] Tian Z, Gu J Q, Han J G, Hara J and Zhang W L 2013 Physics 42 838
[19] Chen H, Liu J and Hong Z 2017 Opt. Commun. 383 508
[20] Born N, Ai-Naib I, Jansen C, Singh R, Moloney J V, Scheller M and Koch M 2015 Adv Opt Mat 3 642
[21] Moharam M G, Grann E B and Pommet D A 1995 J. Opt. Soc. Am. A 12 1068
[22] Sun Y, Chen H, Li X and Hong Z 2017 Opt. Commun. 392 142
[23] Dong Z G, Ni P G, Zhu J and Zhang X 2012 Opt. Express 20 7206
[24] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[25] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[26] Tassin P, Zhang L, Koschny T, Economou E N and Soukoulis C M 2009 Phys. Rev. Lett. 102 053901
[27] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[28] Perret E, Zerounian N, David S and Aniel F 2008 Microelectronic Eng. 85 2276
[29] Chen D, Lu Q and Zhao Y 2006 Appl. Surf. Sci. 253 1573
[30] Wu D, Liu J, Li H, Han H and Hong Z 2013 Acta Optica Sinica 33 1223002 (in Chinese)
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
No Suggested Reading articles found!