Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054302    DOI: 10.1088/1674-1056/26/5/054302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Noninvasive treatment efficacy monitoring and dose control for high-intensity focused ultrasound therapy using relative electrical impedance variation

Huidan Su(宿慧丹)1, Gepu Guo(郭各朴)1, Qingyu Ma(马青玉)1, Juan Tu(屠娟)2, Dong Zhang(章东)2
1 Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 Laboratory of Modern Acoustics of Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  

As an effective therapeutic modality, high-intensity focused ultrasound (HIFU) can destroy tumour tissues by thermocoagulation with less metastasis, but it is still limited by inaccurate non-invasive temperature monitoring and efficacy evaluation. A model of electrical impedance measurement during HIFU therapy was established using the temperature-impedance relationship. Based on the simulations of acoustic pressure, temperature, and electrical conductivity, the impedance of the phantom was calculated and experimentally demonstrated for different values of acoustic power values and treatment time. We proved that the relative impedance variation (RIV) increases linearly with the increasing treatment time at a fixed acoustic power, and the relative impedance variation rate shows a linear relationship with the acoustic power. The RIV and treatment time required for HIFU treatment efficacy are inversely proportional to the acoustic power and the square of acoustic power, respectively. The favourable results suggest that RIV can be used as an efficient indicator for noninvasive temperature monitoring and efficacy evaluation and may provide new strategy for accurate dose control of HIFU therapy.

Keywords:  high-intensity focused ultrasound (HIFU) therapy      relative electrical impedance variation      temperature-impedance relation      efficacy evaluation  
Received:  31 October 2016      Revised:  13 January 2017      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  87.50.Y- (Biological effects of acoustic and ultrasonic energy)  
  87.50.yk (Dosimetry/exposure assessment)  
  87.55.N- (Radiation monitoring, control, and safety)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604156 and 11474166), the Science and Technology Cooperation Projects of China and Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Dong Zhang     E-mail:  maqingyu@njnu.edu.cn

Cite this article: 

Huidan Su(宿慧丹), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东) Noninvasive treatment efficacy monitoring and dose control for high-intensity focused ultrasound therapy using relative electrical impedance variation 2017 Chin. Phys. B 26 054302

[1] Hutchinson L 2011 Nat. Rev. Clin. Oncol. 8 385
[2] Tu J, Hwang J H, Chen T, Fan T, Guo X, Crum L A and Zhang D 2012 Appl. Phys. Lett. 101 124102
[3] Zhang C, Teng F, Tu J and Zhang D 2014 PLOS ONE 9 e113673
[4] Gavrilov L R 2013 J. Acoust. Soc. Am. 133 4348
[5] Wu F 2013 J. Acoust. Soc. Am. 134 1695
[6] Wang X, Lin J, Liu X, Liu J and Gong X 2016 Chin. Phys. B 25 186
[7] Xing X, Lu X, Pus E C and Zhong P 2008 Biochem. Biophys. Res. Commun. 375 645
[8] Smet M D, Heijman E, Langereis S, Hijnen N M and Grüll H 2011 J. Control. Release 150 102
[9] Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G and Martin E 2012 Neurosurgical Focus 32 107
[10] Khokhlova T D, Bailey M R, Canney M S, Khokhiova V A, Lee D and Marro K I 2009 J. Acoust. Soc. Am. 125 2420
[11] Ye G, Smith P P and Noble J A 2010 Ultrasound Med. Biol. 36 234
[12] Daniels M J, Varghese T, Madsen E Land Zagzebski J A 2007 Phys. Med. Biol. 52 4827
[13] Kaczkowski P J and Anand A 2005 J. Acoust. Soc. Am. 118 1882
[14] Parker K J and Chen S 2013 Proc. Mtgs. Acoust. 19 075102
[15] Ghoshal G, Kemmerer, J, Karunakaran C, Abuhabsah R, Miller R, Sarwate S and Oelze M 2014 Ultrason. Imaging. 36 239
[16] Gabriel C, Penman A and Grant E H 2009 Phys. Med. Biol. 54 4863
[17] Griffiths H and Ahmed A 1987 Clin. Phys. Physiol. Meas. 8 147
[18] Zurbuchen U, Holmer C, Lehmann K S, Stein T, Roggan A, Seifarth C, Buhr H J and Ritz J P 2010 Int. J. Hyperthermia 26 26
[19] Cai H, You F, Shi X, Fu F, Liu R, Tang C and Dong X 2010 Chin. Med. Equip. J. 11 8
[20] Lundin S and Stenqvist O 2012 Curr. Opin. Crit. Care 18 35
[21] Leonhardt S and Lachmann B 2012 Intensive Care Med. 38 1917
[22] Tong I O, Kim H B, Jeong W C, Sajib S Z K, Kyung E J, Kim H J, Kwon O I and Woo E J 2015 Appl. Phys. Lett. 107 023701
[23] Blackstock D T 2000 Fundamentals of Physical Acoustics (New York: John Wiley & Sons. Inc.)
[24] Cheng J C 2012 Fundamentals of Acoustics (Beijing: Science Express)
[25] Bailey M R, Khokhlova V A, Sapozhnikov O A, Kargl S G and Crum L A 2003 Acoust. Phys. 49 369
[26] Pennes H H 1948 J. Appl. Physiol. 1 93
[27] Sapareto S A and Dewey W C 1984 Int. J. Radiat. Oncol. Biol. Phys. 10 787
[28] Meaney P M, Clarke R L, ter Haar G R and Lh R 1998 Ultrasound in Med. Biol. 24 1489
[29] Takegami K and Kaneko Y 2004 Ultrasound Med. Biol. 30 1419
[30] Kreider W, Yuldashev P V, Sapozhnikov O A, Farr N, Partanen A, Bailey M R and Khokhlova V A 2013 IEEE Trans. Ultrason. Ferroelec.Freq. Contr. 60 1683
[31] Zhu X, Zhou L, Zhang D and Gong X 2005 Chin. Phys. 14 1594
[32] Yuldashev P V and Khokhlova V A 2011 Acoust. Phys. 57 334
[33] Curra F P, Mourad P D, Khokhlova V A, Cleveland R O and Crum L A 2000 IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 47 1077
[34] Soneson J E and Myers M R 2010 IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 57 2450
[35] Myers M R and Soneson J E 2009 J. Acoust. Soc. Am. 126 425
[36] Soneson J E and Myers M R 2007 J. Acoust. Soc. Am. 122 2526
[37] Zhang C, Cao H, Li Q, Tu J, Guo X, Liu Z and Zhang D 2013 Ultrasound Med. Biol. 39 161
[38] Sun T, Jia N, Zhang D and Xu D 2012 J. Acoust. Soc. Am. 131 4358
[39] Guo G, Lu L, Yin L, TuJ, Guo X,Wu J, Xu D and Zhang D 2014 Phys. Med. Biol. 59 6729
[40] Shehata I A 2012 Eur. J. Radiology 81 534
[41] Okita K, Sugiyama K, Shu T and Matsumto Y 2013 J. Acoust. Soc. Am. 134 1576
[42] Liu Z, Fan T, Guo X and Zhang D 2012 J. Acoust. Soc. Am. 131 3363
[43] Bessonova O and Wilkens V 2013 J. Acoust. Soc. Am. 134 4213
[44] Chen T, Fan T, Zhang W, Qiu Y, Tu J, Guo X and Zhang D 2014 J. Appl. Phys. 115 114902
[45] Zhang L, Wang X, Liu X and Gong X 2015 Chin. Phys. B 24 321
[46] Cheng K, Wu R, Liu X, Liu J, Gong X and Wu J 2015 Chin. Phys. B 24 267
[1] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[2] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[3] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[4] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
[5] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[6] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[7] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[8] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[9] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[10] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[11] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[12] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[13] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[14] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[15] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
No Suggested Reading articles found!