Noninvasive treatment efficacy monitoring and dose control for high-intensity focused ultrasound therapy using relative electrical impedance variation
Huidan Su(宿慧丹)1, Gepu Guo(郭各朴)1, Qingyu Ma(马青玉)1, Juan Tu(屠娟)2, Dong Zhang(章东)2
1 Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 Laboratory of Modern Acoustics of Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China
As an effective therapeutic modality, high-intensity focused ultrasound (HIFU) can destroy tumour tissues by thermocoagulation with less metastasis, but it is still limited by inaccurate non-invasive temperature monitoring and efficacy evaluation. A model of electrical impedance measurement during HIFU therapy was established using the temperature-impedance relationship. Based on the simulations of acoustic pressure, temperature, and electrical conductivity, the impedance of the phantom was calculated and experimentally demonstrated for different values of acoustic power values and treatment time. We proved that the relative impedance variation (RIV) increases linearly with the increasing treatment time at a fixed acoustic power, and the relative impedance variation rate shows a linear relationship with the acoustic power. The RIV and treatment time required for HIFU treatment efficacy are inversely proportional to the acoustic power and the square of acoustic power, respectively. The favourable results suggest that RIV can be used as an efficient indicator for noninvasive temperature monitoring and efficacy evaluation and may provide new strategy for accurate dose control of HIFU therapy.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11604156 and 11474166), the Science and Technology Cooperation Projects of China and Romania (Grant No. 42-23), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161013), the Postdoctoral Science Foundation of China (Grant No. 2016M591874), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.