Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024207    DOI: 10.1088/1674-1056/26/2/024207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The influence of stimulated temperature-dependent emission cross section on intracavity optical parametric oscillator

S Samimi, A Keshavarz
Department of Physics, Shiraz University of Technology, Shiraz, Iran
Abstract  In this paper, the influence of temperature on the intracavity optical parametric oscillator (IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equations under plane wave approximation have been used for simulation of signal output pulse. Results show that the signal output pulse width is decreased by increasing the laser crystal temperature. Also, the signal output energy is increased by the increasing of the laser crystal temperature. The simulation results for IOPO based on Nd:YAG and Nd:YVO4, show that the signal pulse energies are increased by 3.2 and 5.6 times respectively when the laser crystal temperature increased from 15℃ to 300℃. The presented model indicates that the temperature sensitivity of Nd:YVO4-based IOPOs is more than that of Nd:YAG-based IOPOs which is expected from a physical point of view.
Keywords:  nonlinear optic      two-wave mixing      parametric oscillators and amplifiers  
Received:  02 August 2016      Revised:  18 October 2016      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.55.Xi (Diode-pumped lasers)  
Corresponding Authors:  A Keshavarz     E-mail:  Keshavarz@sutech.ac.ir

Cite this article: 

S Samimi, A Keshavarz The influence of stimulated temperature-dependent emission cross section on intracavity optical parametric oscillator 2017 Chin. Phys. B 26 024207

[1] Ding X, Sheng Q, Chen N, Yu X Y, Wang R, Zhang H, Wen W Q, Wang P and Yao J Q 2009 Chin. Phys. B 18 4314
[2] Liu J L, Liu Q, Li H, Li P and Zhang K S 2011 Chin. Phys. B 20 114215
[3] Wan Y, Zeng Q Y, Zhu D Y, Han K, Li T, Han H, Yu S F and Su X Z 2004 Chin. Phys. 13 1402
[4] Liu S D, Wang Z W, Zhang B T, He J L, Hou J, Yang K J, Wang R H and Liu X M 2014 Chin. Phys. Lett. 31 024204
[5] Zheng X H, Zhang B F, Jiao Z X and Wang B 2016 Chin. Phys. B 25 014208
[6] Han K Z, Ning J, He J L, Hou J, Zhang B T and Wang Z W 2015 Chin. Phys. Lett. 32 054203
[7] Boyd R W 2003 Nonlinear Optics(New York: Academic Press)
[8] Shen Z W, Wang Z H, Zhang W, Fan H T, Teng H and Wei Z Y 2014 Chin. Phys. Lett. 31 014207
[9] Tian W L, Wang Z H, Zhu J F and Wei Z Y 2016 Chin. Phys. B 25 014207
[10] Chen T, Shu R, Ge Y and Chen Z 2016 Chin. Phys. B 25 014209
[11] Debuisschert T, Raffy J, Pocholle J P and Papuchon M 1996 J. Opt. Soc. Am. B 13 1569
[12] Bai F, Wang Q, Liu Z, Zhang X, Wan X, Lan W, Jin G, Tao X and Sun Y 2012 Opt. Express 20 807
[13] Huang Y, Huang Y, Cho C and Chen Y 2013 Opt. Express 21 7583
[14] Huang H, He J, Dong X, Zuo C, Zhang B, Qiu G and Liu Z 2008 Appl. Phys. B 90 43
[15] Dabu R, Fenic C and Stratan A 2001 Appl. Opt. 40 4334
[16] Bai F, Wang Q, Liu Z, Zhang X, Wan X, Lan W, Jin G and Zhang H 2012 IEEE J. Quantum Electron. 48 581
[17] Chen Y, Chen S, Tsai S and Lan Y 2003 Appl. Phys. B 77 505
[18] Keshavarz A and Samimi S 2015 Laser Phys. 25 095401
[19] Samimi S and Keshavarz A 2016 Opt. Commun. 359 184
[20] Sato Y and Taira T 2012 Opt. Mater. Express 2 1076
[21] Nie M, Liu Q, Ji E and Gong M 2015 Appl. Opt. 54 8383
[22] Liu Z, Wang Q, Zhang X, Chang J, Wang H, Fan S, Sun W, Jin G, Tao X, Zhang S, et al. 2008 Appl. Phys. B 92 371
[23] Zhang X, Zhao S, Wang Q, Ozygus B and Weber H 1999 IEEE J. Quantum Electron. 35 1912
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[3] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[4] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[5] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[6] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[7] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[8] Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method
A. Abdel Moez, Ahmed I. Ali, and A. Tayel. Chin. Phys. B, 2022, 31(1): 018103.
[9] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[10] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[11] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[12] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[13] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[14] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[15] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
No Suggested Reading articles found!