CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study |
Rui-Lin Han(韩瑞林)1, Shi-Min Jiang(姜世民)1, Yu Yan(闫羽)2 |
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China; 2 Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract In this paper, the magnetic properties, electronic structures and the stabilities of Zn/Cd incorporated two-dimensional AlN nanosheets are investigated by the first-principles method. Numerical results indicate that Zn and Cd substituting Al atom in AlN nanosheets introduce some holes into the 2p orbitals of the N atoms, and the holes mainly come from spin-down 2p orbitals of the N atoms. The magnetic moment of 1.0 μB is produced by Zn/Cd doping AlN nanosheets, and the main component of the magnetic moment of the system is contributed by the partially filled 2p states of the N atoms around the dopant. In particular, when Zn/Cd substituting Al atoms, the magnetic coupling is found to be ferromagnetic. We attribute the hole-mediated p-d interaction to the created ferromagnetic coupling. More importantly, the result of formation energy indicates that Al atom is more inclined to be replaced by Zn atom rather than Cd. This finding is beneficial to developing the spin electronic devices.
|
Received: 11 August 2016
Revised: 17 October 2016
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.75.Lf
|
(Electronic structure of magnetic nanoparticles)
|
|
Fund: Project supported by the National Fundamental Fund of Personnel Training, China (Grant No. J1103210). |
Corresponding Authors:
Rui-Lin Han
E-mail: hanruilin0116@sxu.edu.cn
|
Cite this article:
Rui-Lin Han(韩瑞林), Shi-Min Jiang(姜世民), Yu Yan(闫羽) Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study 2017 Chin. Phys. B 26 027502
|
[1] |
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C C and Zhi C Y 2010 ACS Nano 4 2979
|
[2] |
Zhou Y B, Nie Y F, Liu Y J, Yan K, Hong J H, Jin C H, Zhou Y, Yin J B, Liu Z F and Peng H L 2014 ACS Nano 8 1485
|
[3] |
Late D J, Liu B, Luo J, Matte H S S R, Rao C N R and Dravid V P 2012 Adv. Funct. Mater. 22 1894
|
[4] |
Hu P A, Wen Z Z, Wang L F, Tan P H and Xiao K 2012 ACS Nano 6 5988
|
[5] |
Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B and Xiao K 2013 Nano Lett. 13 1649
|
[6] |
Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
|
[7] |
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576
|
[8] |
Wei R, Hu J, Zhou T, Zhou X, Liu J and Li J 2014 Acta Mater. 66 163
|
[9] |
Chen P, Su Y, Liu H and Wang Y 2013 ACS Appl. Mater. Interfaces 5 12073
|
[10] |
Dai J and Zeng X C 2015 Angew. Chem. Int. Ed. 54 7572
|
[11] |
Iyikanat F, Sahin H, Senger R T and Peeters F M 2015 J. Phys. Chem. C 119 10709
|
[12] |
Peng X Y and Ahuja R 2009 Appl. Phys. Lett. 94 102504
|
[13] |
Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S A, Grazianetti C, Chiappe D, Molle A, Fanciulli M and Dimoulas A 2013 Appl. Phys. Lett. 103 251605
|
[14] |
Zhang X, Liu Z and Hark S 2007 Solid State Commun. 143 317
|
[15] |
Liu P, Sarkar A D and Ahuja R 2014 Comput. Mater. Sci. 86 206
|
[16] |
Valedbagi S, Fathalian A and Elahi S M 2013 Opt. Commun. 309 153
|
[17] |
He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
|
[18] |
Shi C M, Qin H W, Zhang Y J, Hu J F and Ju L 2014 J. Appl. Phys. 115 053907
|
[19] |
Fan S W, Li W B, Huang X N, Li Z B and Pan L Q 2015 Appl. Phys. Express 8 045802
|
[20] |
Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
|
[21] |
Xiong J, Guo P, Guo F, Sun X and Gu H 2014 Mater. Lett. 117 276
|
[22] |
Peng Y T, Xia C X, Zhang H, Wang T X, Wei S Y and Jia Y 2014 J. Appl. Phys. 116 044306
|
[23] |
Zhang C W 2012 J. Appl. Phys. 111 043702
|
[24] |
Zhang W X, Li T, Gong S B, He C and Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
|
[25] |
He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
|
[26] |
Ney A, Ollefs K, Ye S, Kammermeier T, Ney V, Kaspar T C, Chambers S A, Wilhelm F and Rogalev A 2008 Phys. Rev. Lett. 100 157201
|
[27] |
Kaspar T C, Droubay T, Heald S N, Nachimuthu P, Wang C M, Shutthanandan V, Johnson C A, Gamelin D R and Chambers S A 2008 New J. Phys. 10 055010
|
[28] |
Luo J T, Li Y Z, Kang X Y, Zeng F, Pan F, Fan P, Jiang Z and Wang Y 2014 J. Alloys Compd. 586 469
|
[29] |
Ran F Y, Subramanian M, Tanemura M, Hayashi Y and Hihara T 2009 Appl. Phys. Lett. 95 112111
|
[30] |
Jiang L B, Liu Y, Zuo S B and Wang W J 2015 Chin. Phys. B 24 027503
|
[31] |
Yan Z, Wu H L, Zheng R S and Xu B S 2015 Materials Research Innovations 19 367
|
[32] |
Jia W, Han P D, Chi M, Dang S H and Xu B S 2007 J. Appl. Phys. 101 113918
|
[33] |
Monemar M, Gislason H P and Lagerstedt O 1980 J. Appl. Phys. 51 640
|
[34] |
Nepal N, Nakarmi M L, Jang H U, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 192111
|
[35] |
Wu Z G, Zhang W B, Hu H R, Zuo S Y, Wang F Y, Yan P X, Wang J, Zhuo R F and Yan D 2014 Mater. Lett. 136 95
|
[36] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[37] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[38] |
Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
|
[39] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[40] |
Jonnard P, Capron N, Semond F, Massies J, Martinez-Guerrero E and Mariette H 2004 Eur. Phys. J. B 42 351
|
[41] |
Wu Q Y, Huang Z G and Wu R 2007 J Phys.: Condens. Matter 19 056209
|
[42] |
Valedbagi S, Fathalian A and Mohammad E S 2013 Opt. Commun. 309 153
|
[43] |
Li S S, Zhang C W, Zhang R W, Li P, Li F, Yuan M, Ren M J, Ji W X and Wang P J 2014 RSC Adv. 4 7500
|
[44] |
Zhang C W and Wang P J 2011 Phys. Lett. A 375 3583
|
[45] |
Luan H X, Zhang C W, Li F, Li P, Ren M J, Yuan M, Ji W X and Wang P J 2014 RSC Adv. 4 9602
|
[46] |
Li F, Zhang C W and Zhao M W 2013 Physica E 53 101
|
[47] |
Guo H Y, Zhao Y, Lu N, Kan E J, Zeng X C, Wu X J and Yang J L 2012 J. Phys. Chem. C 116 11336
|
[48] |
Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
|
[49] |
Long R and English N J 2009 Phys. Rev. B 80 115212
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|