Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027502    DOI: 10.1088/1674-1056/26/2/027502

Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study

Rui-Lin Han(韩瑞林)1, Shi-Min Jiang(姜世民)1, Yu Yan(闫羽)2
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
2 Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China
Abstract  In this paper, the magnetic properties, electronic structures and the stabilities of Zn/Cd incorporated two-dimensional AlN nanosheets are investigated by the first-principles method. Numerical results indicate that Zn and Cd substituting Al atom in AlN nanosheets introduce some holes into the 2p orbitals of the N atoms, and the holes mainly come from spin-down 2p orbitals of the N atoms. The magnetic moment of 1.0 μB is produced by Zn/Cd doping AlN nanosheets, and the main component of the magnetic moment of the system is contributed by the partially filled 2p states of the N atoms around the dopant. In particular, when Zn/Cd substituting Al atoms, the magnetic coupling is found to be ferromagnetic. We attribute the hole-mediated p-d interaction to the created ferromagnetic coupling. More importantly, the result of formation energy indicates that Al atom is more inclined to be replaced by Zn atom rather than Cd. This finding is beneficial to developing the spin electronic devices.
Keywords:  AlN nanosheets      ferromagnetism      first-principles doping  
Received:  11 August 2016      Revised:  17 October 2016      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  75.50.Pp (Magnetic semiconductors)  
  75.75.Lf (Electronic structure of magnetic nanoparticles)  
Fund: Project supported by the National Fundamental Fund of Personnel Training, China (Grant No. J1103210).
Corresponding Authors:  Rui-Lin Han     E-mail:

Cite this article: 

Rui-Lin Han(韩瑞林), Shi-Min Jiang(姜世民), Yu Yan(闫羽) Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study 2017 Chin. Phys. B 26 027502

[1] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C C and Zhi C Y 2010 ACS Nano 4 2979
[2] Zhou Y B, Nie Y F, Liu Y J, Yan K, Hong J H, Jin C H, Zhou Y, Yin J B, Liu Z F and Peng H L 2014 ACS Nano 8 1485
[3] Late D J, Liu B, Luo J, Matte H S S R, Rao C N R and Dravid V P 2012 Adv. Funct. Mater. 22 1894
[4] Hu P A, Wen Z Z, Wang L F, Tan P H and Xiao K 2012 ACS Nano 6 5988
[5] Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B and Xiao K 2013 Nano Lett. 13 1649
[6] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[7] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C and Wu J 2012 Nano Lett. 12 5576
[8] Wei R, Hu J, Zhou T, Zhou X, Liu J and Li J 2014 Acta Mater. 66 163
[9] Chen P, Su Y, Liu H and Wang Y 2013 ACS Appl. Mater. Interfaces 5 12073
[10] Dai J and Zeng X C 2015 Angew. Chem. Int. Ed. 54 7572
[11] Iyikanat F, Sahin H, Senger R T and Peeters F M 2015 J. Phys. Chem. C 119 10709
[12] Peng X Y and Ahuja R 2009 Appl. Phys. Lett. 94 102504
[13] Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S A, Grazianetti C, Chiappe D, Molle A, Fanciulli M and Dimoulas A 2013 Appl. Phys. Lett. 103 251605
[14] Zhang X, Liu Z and Hark S 2007 Solid State Commun. 143 317
[15] Liu P, Sarkar A D and Ahuja R 2014 Comput. Mater. Sci. 86 206
[16] Valedbagi S, Fathalian A and Elahi S M 2013 Opt. Commun. 309 153
[17] He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
[18] Shi C M, Qin H W, Zhang Y J, Hu J F and Ju L 2014 J. Appl. Phys. 115 053907
[19] Fan S W, Li W B, Huang X N, Li Z B and Pan L Q 2015 Appl. Phys. Express 8 045802
[20] Bai Y J, Deng K M and Kan E J 2015 RSC Adv. 5 18352
[21] Xiong J, Guo P, Guo F, Sun X and Gu H 2014 Mater. Lett. 117 276
[22] Peng Y T, Xia C X, Zhang H, Wang T X, Wei S Y and Jia Y 2014 J. Appl. Phys. 116 044306
[23] Zhang C W 2012 J. Appl. Phys. 111 043702
[24] Zhang W X, Li T, Gong S B, He C and Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
[25] He H, Huang L, Xiao M, Fu Y, Shen X and Zeng J 2013 J. Mater. Sci.: Mater. Electron. 24 4499
[26] Ney A, Ollefs K, Ye S, Kammermeier T, Ney V, Kaspar T C, Chambers S A, Wilhelm F and Rogalev A 2008 Phys. Rev. Lett. 100 157201
[27] Kaspar T C, Droubay T, Heald S N, Nachimuthu P, Wang C M, Shutthanandan V, Johnson C A, Gamelin D R and Chambers S A 2008 New J. Phys. 10 055010
[28] Luo J T, Li Y Z, Kang X Y, Zeng F, Pan F, Fan P, Jiang Z and Wang Y 2014 J. Alloys Compd. 586 469
[29] Ran F Y, Subramanian M, Tanemura M, Hayashi Y and Hihara T 2009 Appl. Phys. Lett. 95 112111
[30] Jiang L B, Liu Y, Zuo S B and Wang W J 2015 Chin. Phys. B 24 027503
[31] Yan Z, Wu H L, Zheng R S and Xu B S 2015 Materials Research Innovations 19 367
[32] Jia W, Han P D, Chi M, Dang S H and Xu B S 2007 J. Appl. Phys. 101 113918
[33] Monemar M, Gislason H P and Lagerstedt O 1980 J. Appl. Phys. 51 640
[34] Nepal N, Nakarmi M L, Jang H U, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 89 192111
[35] Wu Z G, Zhang W B, Hu H R, Zuo S Y, Wang F Y, Yan P X, Wang J, Zhuo R F and Yan D 2014 Mater. Lett. 136 95
[36] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[37] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[38] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Jonnard P, Capron N, Semond F, Massies J, Martinez-Guerrero E and Mariette H 2004 Eur. Phys. J. B 42 351
[41] Wu Q Y, Huang Z G and Wu R 2007 J Phys.: Condens. Matter 19 056209
[42] Valedbagi S, Fathalian A and Mohammad E S 2013 Opt. Commun. 309 153
[43] Li S S, Zhang C W, Zhang R W, Li P, Li F, Yuan M, Ren M J, Ji W X and Wang P J 2014 RSC Adv. 4 7500
[44] Zhang C W and Wang P J 2011 Phys. Lett. A 375 3583
[45] Luan H X, Zhang C W, Li F, Li P, Ren M J, Yuan M, Ji W X and Wang P J 2014 RSC Adv. 4 9602
[46] Li F, Zhang C W and Zhao M W 2013 Physica E 53 101
[47] Guo H Y, Zhao Y, Lu N, Kan E J, Zeng X C, Wu X J and Yang J L 2012 J. Phys. Chem. C 116 11336
[48] Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
[49] Long R and English N J 2009 Phys. Rev. B 80 115212
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[6] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[7] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[13] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Magnetism induced by Mn atom doping in SnO monolayer
Ruilin Han(韩瑞林), Yu Yan(闫羽). Chin. Phys. B, 2018, 27(11): 117505.
No Suggested Reading articles found!