Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023102    DOI: 10.1088/1674-1056/26/2/023102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII

R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin
Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan
Abstract  We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (2Po3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.
Keywords:  photoionization cross sections      energy levels      wavelengths      lifetimes  
Received:  11 August 2016      Revised:  26 October 2016      Accepted manuscript online: 
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  32.80.-t (Photoionization and excitation)  
Corresponding Authors:  R T Nazir     E-mail:  rajatariq20@gmail.com

Cite this article: 

R T Nazir, M A Bari, M Bilal, S Sardar, M H Nasim, M Salahuddin Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII 2017 Chin. Phys. B 26 023102

[1] Bizau J M, Champeaux J P, Cubaynes D, Wuilleumier F J, Folkmann F, Jacobsen T S, Penent F, Blancard C and Kjeldsen H 2005 Astron. Astrophys. 439 387
[2] Jerkstrand A, Fransson C, Maguire K, Smartt S, Ergon M and Spyromilio J 2012 Astron. Astrophys. 546 A28
[3] Pradhan A K and Nahar S N 2011 Atomic Astrophysics and Astronomy (Cambridge: Cambridge University Press)
[4] Cunto W, Mendoza C, Ochsenbein F and Zeippen C J 1993 Astron. Astrophys. 275 L5
[5] Del Zanna G and N R Badnell 2016 Astron. Astrophys 585 A118
[6] Miller J M, Raymond J, Fabian A, Steeghs D, Homan J, Reynolds C, van der Klis M and Wijnands R 2006 Nature 441 953
[7] Kallman T R, Bautista M A, Goriely S, Mendoza C, Miller J M, Palmeri P, Quinet P and Raymond J 2009 Astrophys. J. 701 865
[8] Tumra Tumra T, et al. 2009 Astrophys. J. 705 L62
[9] Tamagawa T 2010 The 10th International Symposium on Origin of Matter and Evolution of Galaxies, AIP Conf. Proc., eds. Tanihara I et al., Vol. 1269 (New York: Am. Inst. Phys.) p. 137
[10] Koyama K 2011 The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies., ASP Conf. Ser., eds. Morris M R, Wang Q D and Yuan F, Vol. 439 (San Francisco: Astron. Soc. Pac.) p. 418
[11] Gabriel A H, Fawcett B C and Jordan C 1966 Proc. Phys. Soc. 87 825
[12] Edlen B and Smitt R 1978 Sol. Phys. 57 329
[13] Malinovsky L and Heroux M 1973 Astrophys. J. 181 1009
[14] Raassen A J J, Mewe R, Audard M, Güel M, Behar E, Kaastra J S, van der Meer R L J, Foley C R and Ness J U 2002 Astron. Astrophys 389 228
[15] Mattioli M, Fournier K B, Coffey I, Finkenthal M, Jupén C, Valisa M and Contributors to the EFDA-JET Work Programme 2004 J. Phys. B: At. Mol. Opt. Phys. 37 13
[16] Yang Z H, Du S B, Zeng X T, Su H, Wang Y D and Zhang Y P 2005 Chin. Phys. 14 953
[17] Kimura K, Yamazaki T and Achiba Y 1978 Chem. Phys. Lett. 58 104
[18] Ruscic B and Berkowitz J 1983 Phys. Rev. Lett. 50 675
[19] Hansen J E, Cowan R D, Carter S L and Kelly H P 1984 Phys. Rev. A 30 1540
[20] van der Meulen P, Krause M O, Caldwell C D, Whitfield S B and de Lange C A 1992 Phys. Rev. A 46 2468
[21] Krause M O, Caldwell C D, Whitfield S B, de Lange C A and van der Meulen P 1993 Phys. Rev. A 47 3015
[22] Covington A M, Aguilar A, Alvarez I, et al. 2001 in Proceedings of the XXII International Conference on Photonic, Electronic, and Atomic Collisions, eds. Datz S, Bannister M E, Krause H F, Saddiq L H, Schultz D R and Vane C R (Princeton: Rinton Press) p. 48
[23] Alna'washi G A, Lu M, Habibi M, Phaneuf R A 2010 Phys. Rev. A 81 053416
[24] Tyndall N B, Ramsbottom C A, Ballance C P and Hibbert A 2016 MNRAS 456 366
[25] Dyall K G, Grant I P, Johnson C T and Plummer E P 1989 Comput. Phys. Commun. 55 425
[26] Gu M F 2003 Astrophys. J. 582 1241
[27] Fawcett B C 1986 At. Data Nucl. Data Tables 35 185
[28] Chou H S, Chang J Y, Chang Y H and Huang K N 1996 At. Data Nucl. Data Tables 62 77
[29] Bhatia A K and Doschek G A 1998 At. Data Nucl. Data Tables 68 49
[30] Eissner W, Jones M and Nussbaumer H 1974 Comput. Phys. Commun. 8 270
[31] Aggarwal K M, Keenan F P and Msezane A Z 2003 At. Data Nucl. Data Tables85 453
[32] Ishikawa Y and Vilkas M J 2008 Phys. Rev. A 78 042501
[33] Froese Fischer C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074020
[34] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (Berlin: Springer)
[35] Jänsson P, Heb X, Froese Fischerb C and Grantc I P 2007 Comput. Phys. Commun. 177 597
[36] Shirai T, Sugar J, Musgrove A and Wiese W L 2000 J. Phys. C. Ref. Data 8 360
[37] Norrington P H 2004 www.am.qub.ac.uk/DARC
[38] Verner D A and Yakovelev D G 1993 At. Data Nucl. Data Tables 55 233
[39] Sardar S, Bilal M, Nazir R T, Bari M A, Hannan A and Nasim M H 2015 MNRAS 450 1631
[40] Del Zanna G and Storey P J 2013 Astron. Astrophys. 549 A42
[41] Biémont E and Hansen J E 1986 Phys. Scr. 34 116
[42] Träbert E, Saathoff G and Wolf A 2004 Eur. Phys. J. D 30 297
[43] Träbert E, Hoffmann J, Krantz C, Wolf A, Ishikawa Y and Santana J A 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025002
[44] Träbert E, Grieser M, Krantz C, et al. 2012 J. Phys. B: At. Mol. Opt. Phys. 45 215003
[45] Träbert E, Calamai A G, Gwinner G, et al. 2003 Phys. B: At. Mol. Opt. Phys. 36 1129
[46] Kaufman B and Sugar J 1986 J. Phys. C. Ref. Data 15 321
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[3] Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65)
Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙). Chin. Phys. B, 2022, 31(5): 053102.
[4] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[5] Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚). Chin. Phys. B, 2018, 27(7): 073101.
[6] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[7] Spatiotemporal propagation dynamics of intense optical pulses in loosely confined gas-filled hollow-core fibers
Rui-rui Zhao(赵睿睿), Ding Wang(王丁), Zhi-yuan Huang(黄志远), Yu-xin Leng(冷雨欣), Ru-xin Li(李儒新). Chin. Phys. B, 2017, 26(1): 014208.
[8] Comment on “Atomic structure calculations for F-like tungsten” by S. Aggarwal [Chin. Phys B 23 (2014) 093203]
Kanti M Aggarwal. Chin. Phys. B, 2016, 25(4): 043201.
[9] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[10] Extreme ultraviolet and soft x-ray spectral lines in Rb XXIX
Indu Khatri, Arun Goyal, Sunny Aggarwal, A K Singh, Man Mohan. Chin. Phys. B, 2016, 25(3): 033201.
[11] Comment on “Relativistic atomic data for W XLVII” by S. Aggarwal et al. [Chin. Phys. B 24 (2015) 053201]
Kanti M. Aggarwal. Chin. Phys. B, 2015, 24(12): 123201.
[12] Extreme ultraviolet and x-ray transition wavelengths in Rb XXIV
Indu Khatri, Arun Goyal, Sunny Aggarwal, A. K. Singh, Man Mohan. Chin. Phys. B, 2015, 24(10): 103202.
[13] Influence of nanomechanical force on the electronic structure of InAs/GaAs quantum dots
Song Xin (宋鑫), Feng Hao (冯昊), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远). Chin. Phys. B, 2013, 22(4): 047305.
[14] Impact of GaNAs strain compensation layer on the electronic structure of InAs/GaAs quantum dots
Song Xin (宋鑫), Feng Hao (冯淏), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Liu Jian-Tao (刘建涛). Chin. Phys. B, 2013, 22(1): 017304.
[15] Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2011, 20(5): 054210.
No Suggested Reading articles found!