Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023101    DOI: 10.1088/1674-1056/26/2/023101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of P impurity on NiAlΣ5 grain boundary from first-principles study

Xue-Lan Hu(胡雪兰)1, Ruo-Xi Zhao(赵若汐)1, Yang Luo(罗阳)1, Qing-Gong Song(宋庆功)2
1 Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China;
2 College of Science, Civil Aviation University of China, Tianjin 300300, China
Abstract  First-principles calculations based on the density functional theory (DFT) and ultra-soft pseudopotential are employed to study the atomic configuration and charge density of impurity P in NiAl Σ5 grain boundary (GB). The negative segregation energy of a P atom proves that a P atom can easily segregate in the NiAl GB. The atomic configuration and formation energy of the P atom in the NiAl GB demonstrate that the P atom tends to occupy an interstitial site or substitute a Al atom depending on the Ni/Al atoms ratio. The P atom is preferable to staying in the Ni-rich environment in the NiAl GB forming P-Ni bonds. Both of the charge density and the deformation charge imply that a P atom is more likely to bond with Ni atoms rather than with Al atoms. The density of states further exhibits the interactions between P atom and Ni atom, and the orbital electrons of P, Ni and Al atoms all contribute to P-Ni bonds in the NiAl GB. It is worth noting that the P-Ni covalent bonds might embrittle the NiAl GB and weakens the plasticity of the NiAl intermetallics.
Keywords:  NiAl Σ5 grain boundary      impurity effect      first principles  
Received:  21 August 2016      Revised:  27 October 2016      Accepted manuscript online: 
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  71.20.Lp (Intermetallic compounds)  
  61.72.S- (Impurities in crystals)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51201181) and the Scientific Research Fund of Civil Aviation University of China (Grant No. 08QD14X).
Corresponding Authors:  Xue-Lan Hu     E-mail:  huxlemma@163.com

Cite this article: 

Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Yang Luo(罗阳), Qing-Gong Song(宋庆功) Effect of P impurity on NiAlΣ5 grain boundary from first-principles study 2017 Chin. Phys. B 26 023101

[1] Stoloff N S 2009 Microstructure and Properties of Materials, Vol. 1 (Singapore: World Scientific) pp. 51-106
[2] Miracle D B 1993 Acta Metall. Mater. 41 649
[3] Miracle D B and Darolia R 1995 Intermetallic Compounds: Principles and Practice, Vol. 2 (Chichester: Wiley) pp. 53-72
[4] Liu C T and George E P 1997 Int. Symp. on Nickel and Iron Aluminides: Processing, Properties, and Applications (Materials Park, OH: ASM International) pp. 21-31
[5] Lazar P and Podloucky R 2006 Phys. Rev. B 73 104114.
[6] Frommeyer G and Derder C 1997 J. Phys. III 7 2393
[7] Wang X Z, Lin L B, He J and Chen J 2011 Acta Phys. Sin. 60 077104 (in Chinese)
[8] Li C X, Dang S H and Han P D 2014 J. Atomic Mol. Phys. 31 470 (in Chinese)
[9] Meng F S, Li J H and Zhao X 2014 Acta Phys. Sin. 63 237102 (in Chinese)
[10] Tahir A M, Janisch R and Hartmaier A 2014 Mater. Sci. Eng. A 612 462
[11] Liu L H, Zhang Y, Hu X L and Lv G H 2009 J. Phys.: Condens. Matter 21 015002
[12] Liu C T, White C L and Horton J A 1985 Acta Metall. 33 213
[13] Jayaram R and Miller M K 1993 Appl. Surf. Sci. 67 311
[14] Miller M K, Anderson I M and Russell K F 1996 Appl. Surf. Sci. 94/95 288
[15] Jayaram R and Miller M K 1995 Scripta Metallurgicaet Materialia 33 19
[16] Kim T, Hong K T and Lee K S 2003 Intermetallics 11 33
[17] Burbery N J, Das R and Ferguson W G 2015 Mater. Lett. 158 413
[18] Sun W R, Guo S R and Lu D Z 1997 Metal. Mater. Trans. 28A 649
[19] Zhou J and Guo J T 2004 Acta Metall. Sin. 40 67 (in Chinese)
[20] Zhang G Y, Guo J T and Zhang H 2007 Meter. Eng. 4 7 (in Chinese)
[21] Sun W R, Guo S R and Guo J T 1995 Acta Metall. Sin. 31 346 (in Chinese)
[22] Cao W D and Kennedy R L 1996 TMS Warrendale PA 463 589
[23] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[24] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[25] Perdew J P and Wang Y 1992 Phys. Rev. B 46 12947
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Kohyama M, Kose S and Yamamoto R J 1991 J. Phys.: Condens Matter 3 7555
[28] Benedek R, Walle V, Gerstl SSA, Asta M and Seidman D N 2005 Phys. Rev. B 71 094201
[29] Hu X L, Zhang Y and Lv G H 2009 Intermetallics 17 358
[30] Meschel S V and Kleppa O J 2001 J. Alloys Compd. 319 204
[31] Li H T, Li M, Wu Y W, Zhou H and Wu X H 2012 Intermetallics 28 156
[32] Zhang M Y, Yang K, Chen Z, Wang Y X and Zhang J Z 2013 Rare Metal Meter. & Eng. 42 1531 (in Chinese)
[33] http://www.webelements.com
[34] McLean D 1957 Grain Boundaries in Metals (London: Oxford University Press) pp. 44-83
[35] Zhou H B, Jin S, Zhang Y and Lv G H 2011 Sci. China-Phys. Mech. Astron. 54 2164
[36] Zhang S J, Kontsevoi O Y, Freeman A J and Olson G B 2011 Acta Mater. 59 6155
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[12] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[13] First principles study of interactions of oxygen-carbon-vacancy in bcc Fe
Yuan You(由园), Mu-Fu Yan(闫牧夫), Ji-Hong Yan(闫纪红), Gang Sun(孙刚), Chao Wang(王超). Chin. Phys. B, 2019, 28(10): 106102.
[14] First-principles study of structural, electronic, elastic, and thermal properties of Imm2-BC
Qiang Li(李强), Zhen-Ling Wang(王振玲), Yu-Cheng Yu(于玉城), Lan Ma(马兰), Shao-Li Yang(杨绍利), Hai-Bo Wang(王海波), Rui Zhang(张锐). Chin. Phys. B, 2019, 28(1): 013101.
[15] Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations
Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平). Chin. Phys. B, 2018, 27(7): 077103.
No Suggested Reading articles found!