ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spatiotemporal propagation dynamics of intense optical pulses in loosely confined gas-filled hollow-core fibers |
Rui-rui Zhao(赵睿睿)1,2, Ding Wang(王丁)1, Zhi-yuan Huang(黄志远)1, Yu-xin Leng(冷雨欣)1, Ru-xin Li(李儒新)1 |
1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We numerically study the propagation dynamics of intense optical pulses in gas-filled hollow-core fibers (HCFs). The spatiotemporal dynamics of the pulses show a transition from tightly confined to loosely confined characteristics as the fiber core is increased, which manifests as a deterioration in the spatiotemporal uniformity of the beam. It is found that using the gas pressure gradient does not enhance the beam quality in large-core HCFs, while inducing a positive chirp in the pulse to lower the peak power can improve the beam quality. This indicates that the self-focusing effect in the HCFs is the main driving force for the propagation dynamics. It also suggests that pulses at longer wavelengths are more suitable for HCFs with large cores because of the lower critical power of self-focusing, which is justified by the numerical simulations. These results will benefit the generation of energetic few-cycle pulses in large-core HCFs.
|
Received: 22 August 2016
Revised: 18 September 2016
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
Corresponding Authors:
Ding Wang, Yu-xin Leng
E-mail: wangding@siom.ac.cn;lengyuxin@mail.siom.ac.cn
|
Cite this article:
Rui-rui Zhao(赵睿睿), Ding Wang(王丁), Zhi-yuan Huang(黄志远), Yu-xin Leng(冷雨欣), Ru-xin Li(李儒新) Spatiotemporal propagation dynamics of intense optical pulses in loosely confined gas-filled hollow-core fibers 2017 Chin. Phys. B 26 014208
|
[1] |
Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
[2] |
Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
|
[3] |
Nisoli M, Silvestri S D and Svelto O 1996 Appl. Phys. Lett. 68 2793
|
[4] |
Suda A, Hatayama M, Nagasaka K and Midorikawa K 2005 Appl. Phys. Lett. 86 111116
|
[5] |
Chen X W, Zou J P, Martin L, Simon F, Martens R L and Audebert P 2009 Opt. Lett. 34 1588
|
[6] |
Bohman S, Suda A, Kanai T, Yamaguchi S and Midorikawa S 2010 Opt. Lett. 35 1887
|
[7] |
Mashiko H, Nakamura C M, Li C, Moon E, Wang H, Tackett J and Chang Z 2007 Appl. Phys. Lett. 90 161114
|
[8] |
Arnold C L, Zhou B, Akturk S, Chen S, Couairon A and Mysyrowicz A 2010 New J. Phys. 12 073015
|
[9] |
Wang D, Leng Y X and Xu Z Z 2012 Opt. Commun. 285 2418
|
[10] |
Wang D, Leng Y X and Huang Z Y 2014 J. Opt. Soc. Am. B 31 1248
|
[11] |
Jacqmin H, Jullien A, Mercier B, Hanna M, Druon F, Papadopoulos D and Lopez-Martens R 2015 Opt. Lett. 40 709
|
[12] |
Cardin V, Thire N, Beaulieu S, Wanie V, Legare F and Schmidt B E 2015 Appl. Phys. Lett. 107 181101
|
[13] |
Vozzi C, Nisoli M, Sansone G, Stagira S and Silvestri S De 2005 Appl. Phys. B 80 285
|
[14] |
Tempea G and Brabec T 1998 Opt. Lett. 23 762
|
[15] |
Braun A, Korn G, Liu X, Du D, Squier J and Mourou G 1995 Opt. Lett. 20 73
|
[16] |
Adachi S, Ishii N, Nomura Y, Kobayashi Y, Itatani J, Kanai T and Watanabe S 2010 Opt. Lett. 35 980
|
[17] |
Herrmann D, Veisz L, Tautz R, Tavella F, Schmid K, Pervak V and Krauze F 2009 Opt. Lett. 34 2459
|
[18] |
Granados E, Chen L, Lai C, Hong K and Kaertner F X 2012 Opt. Express 20 9099
|
[19] |
Hely C M, Coudert-Alteirac H, Miranda M, Louisy M, Kovacs K, Tosa V, Balogh E, Varju K, L'Huillier A, Couairon A and Arnold C L 2016 Optica 3 75
|
[20] |
Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Appl. Phys. B 79 673
|
[21] |
Mechain G, D'Amico C, Andre Y B, Tzortzakis S, Franco M, Prade B, Mysyrowicz A, Couairon A, Salmon E and Sauerbrey R 2005 Opt. Commun. 247 171
|
[22] |
Kolesik M and Moloney J V 2004 Phys. Rev. E 70 036604
|
[23] |
Marcatili E A and Schmeltzer R A 1964 Bell Syst. Tech. J. 43 1783
|
[24] |
Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys. JETP 23 924
|
[25] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
|
[26] |
Hassan H Th, Wirth A, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V and Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301
|
[27] |
Nurhuda M, Suda A, Midorikawa K, Hatayama M and Nagasaka K 2003 J. Opt. Soc. Am. B 20 2002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|