|
|
Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas |
Xuebing Luo(罗学兵), Kezhao Zhou(周可召), Zhidong Zhang(张志东) |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional (2D) Fermi superfluid system trapped in an optical lattice potential. Within the framework of mean-field theory, the cooper pair density, the atom number density, and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime. Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime. Meanwhile, the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional (3D) to 2D case. Furthermore, using a simple re-normalization procedure, we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by Gc which is obtained as a function of the lattice potential's parameter. Finally, we investigate the vortex core size and find that it grows with increasing interaction strength. In particular, by analyzing the behavior of the vortex core size in both BCS and BEC regimes, we find that the vortex core size behaves quite differently for positive and negative chemical potentials.
|
Received: 30 March 2016
Revised: 28 June 2016
Accepted manuscript online:
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51331006, 51590883, and 11204321) and the Project of Chinese Academy of Sciences (Grant No. KJZD-EW-M05-3). |
Corresponding Authors:
Kezhao Zhou
E-mail: kezhaozhou@gmail.com
|
Cite this article:
Xuebing Luo(罗学兵), Kezhao Zhou(周可召), Zhidong Zhang(张志东) Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas 2016 Chin. Phys. B 25 110306
|
[1] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[2] |
DeMarco B and Jin D S 1999 Science 285 1703
|
[3] |
Truscott A, Strecker K, McAlexander W, Partridge G and Hulet R G 2001 Science 291 2570
|
[4] |
O'Hara K M, Hemmer S L, Gehm M E, Granade S R and Thomas J E 2002 Science 298 2179
|
[5] |
Bourdel T, Cubizolles J, Khaykovich L, Magalhaes K, Kokkelmans S, Shlyapnikov G and Salomon C 2003 Phys. Rev. Lett. 91 020402
|
[6] |
Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Hecker-Denschlag J and Grimm R 2004 Phys. Rev. Lett. 92 120401
|
[7] |
Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
|
[8] |
Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
|
[9] |
Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
|
[10] |
Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
|
[11] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[12] |
Deng J, Diao P P, Yu Q L and Wu H B 2015 Chin. Phys. Lett. 32 53401
|
[13] |
Chen K J and Zhang W 2014 Chin. Phys. Lett. 31 110303
|
[14] |
Luan T, Jia T, Chen X Z and Ma Z Y 2014 Chhin. Phys. Lett. 31 43401
|
[15] |
Qi X Y, Zhang A X and Xue J K 2013 Chin. Phys. Lett. 30 110305
|
[16] |
Ruan X X, Gong H, Du L, Jiang Y, Sun W M and Zong H S 2013 Chin. Phys. Lett. 30 110303
|
[17] |
Liu Y X, Ye J, Li Y Y and Zhang Y B 2015 Chin. Phys. B 24 86701
|
[18] |
Feshbach H 1958 Ann. Phys. 5 357
|
[19] |
Stoof H T C, Houbiers M, Sackett C A and Hulet R G 1996 Phys. Rev. Lett. 76 10
|
[20] |
Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
|
[21] |
Eagles B 1969 Phys. Rev. 186 456
|
[22] |
Leggett A J 1980 J. Phys. Colloq. 41 7
|
[23] |
Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
|
[24] |
Li S Q, Hu H and Liu X J 2008 Physics 37 141
|
[25] |
Zhang J and Zhai H 2006 Physics 35 553
|
[26] |
Lai X J, Cai X O and Zhang J F 2015 Chin. Phys. B 24 70503
|
[27] |
Wen H H 2006 Physics 35 16
|
[28] |
Wen H H 2006 Physics 35 111
|
[29] |
Lü G, Cao X C, Qin Y F, Wang L H, Li G H, Gao F, Sun F W and Zhang H 2015 Acta Phys. Sin. 64 217501(in Chinese)
|
[30] |
Sun L, Huo Y, Zhou C, Liang J H, Zhang X Z, Xu Z J, Wang Y and Wu Y Z 2015 Acta Phys. Sin. 64 197502(in Chinese)
|
[31] |
Liu X L, Yang Y, Wu J P, Zhang Y F, Fan H M and Ding J 2015 Chin. Phys. B 24 127505
|
[32] |
Sun M J and Liu Y W 2015 Acta Phys. Sin. 64 247505(in Chinese)
|
[33] |
Bulgac A and Yu Y 2003 Phys. Rev. Lett. 91 190404
|
[34] |
Hu H, Liu X J and Drummond P 2007 Phys. Rev. Lett 98 060406
|
[35] |
Sensarma R, Randeria M and Ho T L 2006 Phys. Rev. Lett. 96 090403
|
[36] |
Machida M and Koyama T 2005 Phys. Rev. Lett. 94 140401
|
[37] |
de Gennes P G 1966 Superconductivity of Metals and Alloys (New York:Benjamin)
|
[38] |
Tempere J, Wouters M and Devreese J T 2005 Phys. Rev. A 71 033631
|
[39] |
Tempere J and Devreese J T 2006 Physica C 437-438 323
|
[40] |
Tempere J and Devreese J T 2005 Path-integrals and the BEC/BCS Crossover in Dilute Atomic Gases. The 8-th International Conference "Path Integrals. From Quantum Information to Cosmology", Prague, Czech Republic
|
[41] |
Altland A and Simons B D 2010 Condensed Matter Field Theory (Cambridge:Cambridge University Press)
|
[42] |
Bhattacherjee A B 2007 J. Phys. B:At. Mol. Opt. Phys. 40 4453
|
[43] |
De Palo S, Castellani C, Di Castro C and Chakraverty B K 1999 Phys. Rev. B 60 564
|
[44] |
Orso G, Menotti C and Stringari S 2006 Phys. Rev. Lett. 97 190408
|
[45] |
Wouters M and Orso G 2006 Phys. Rev. A 73 012707
|
[46] |
Iskin M and Sá de Melo C A R 2009 Phys. Rev. Lett. 103 165301
|
[47] |
Adhikari S K andSalasnich L 2008 Phys. Rev. A 78 043616
|
[48] |
Adhikari S K 2010 J. Phys. B 43 085304
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|