Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 110501    DOI: 10.1088/1674-1056/25/11/110501
GENERAL Prev   Next  

Cluster synchronization of community network with distributed time delays via impulsive control

Hui Leng(冷卉), Zhao-Yan Wu(吴召艳)
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Abstract  Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results.
Keywords:  cluster synchronization      community network      distributed time delay      impulsive control  
Received:  06 May 2016      Revised:  18 August 2016      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).
Corresponding Authors:  Zhao-Yan Wu     E-mail:  zhywu@jxnu.edu.cn

Cite this article: 

Hui Leng(冷卉), Zhao-Yan Wu(吴召艳) Cluster synchronization of community network with distributed time delays via impulsive control 2016 Chin. Phys. B 25 110501

[1] Gonzalez M C, Herrmann H J, Kertesz J and Vicsek T 2007 Physica A 379 307
[2] Girvan M and Newman M E J 2002 Proc. Nat. Acad. Sci. USA 99 7821
[3] Zhang Y, Friend A J, Traud A L, Porter M A, Fowler J H and Mucha P J 2008 Physica A 387 1705
[4] Jonsson P F, Cavanna T, Zicha D and Bates P A 2006 BMC Bioinf. 7 2
[5] Flake G W, Lawrence S, Giles C L and Coetzee F M 2002 IEEE Comput. 35 66
[6] Fortunato S 2010 Phys. Rep. 486 75
[7] Li C H and Yang S Y 2008 Int. J. Bifur. Chaos 18 2039
[8] Gopalsamy K and He X Z 1994 Physcia D 76 344
[9] Kyrychko Y N, Blyuss K B and Schoell E 2014 Chaos 24 043117
[10] Punetha N, Ramaswamy R and Atay F M 2015 Phys. Rev. E 91 042906
[11] Hu J B, Lu G P and Zhao L D 2016 Nonlinear Dyn. 83 1101
[12] Andrew L Y T, Li X F, Chu Y D and Zhang H 2015 Chin. Phys. B 24 100502
[13] Chen G, Wang X and Li X 2012 Introduction to Complex Networks:Models, Structure and Dynamics (Beijing:High Education Press)
[14] Yao H X and Wang S G 2012 Chin. Phys. B 21 110506
[15] Gan L Y N, Wu Z Y and Gong X L 2015 Chin. Phys. B 24 040503
[16] Cai G L, Jiang S Q, Cai S M and Tian L X 2014 Chin. Phys. B 23 120505
[17] Hou H Z, Zhang Q L and Zheng M 2012 Nonlinear Dyn. 83 739
[18] Jalan S, Singh A, Acharyya S and Kurths J 2015 Phys. Rev. E 91 022901
[19] Ji P, Peron T K D M, Rodrigues F A and Kurths J 2014 Phys. Rev. E 90 062810
[20] Juang J and Liang Y H 2014 Chaos 24 013110
[21] Cai S M, Li X J, Jia Q and Liu Z R 2016 Nonlinear Dyn. 85 2405
[22] Fan H G, Zhao Y and Feng J W 2016 IET Control Theory Appl. 10 762
[23] Kaneko K 1994 Physica D 75 55
[24] Yoshioka M 2005 Phys. Rev. E 71 061914
[25] Zhao H, Li L X, Peng H P, Xiao J H, Yang Y X and Zheng M W 2016 Nonlinear Dyn. 83 1437
[26] Liu D F, Wu Z Y and Ye Q L 2014 Chin. Phys. B 23 040504
[27] Sun W, Lu J H, Chen S H and Yu X H 2014 Chaos 24 013141
[28] Yang X S, Cao J D and Lu J Q 2012 IEEE Trans. Circuits Syst. I 59 371
[29] Wu Z Y 2014 Commun. Theor. Phys. 61 590
[30] Cai S M, Zhou P P and Liu Z R 2014 Nonlinear Dyn. 76 1677
[31] Cai S M, Zhou P P and Liu Z R 2015 J. Franklin Inst. 352 2065
[32] Lorenz E N 1963 J. Atmos. Sci. 20 130
[33] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[34] Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
[35] Yu W, Chen G and Lu J 2009 Automatica 45 429
[36] Watts D J and Strogatz S H 1998 Nature 393 440
[37] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[1] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[2] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[3] Cluster synchronization in community network with nonidentical nodes via intermittent pinning control
Gan Lu-Yi-Ning (甘璐伊宁), Wu Zhao-Yan (吴召艳), Gong Xiao-Li (弓晓利). Chin. Phys. B, 2015, 24(4): 040503.
[4] Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control
Liu Dan-Feng (刘丹峰), Wu Zhao-Yan (吴召艳), Ye Qing-Ling (叶青伶). Chin. Phys. B, 2014, 23(4): 040504.
[5] Robust H cluster synchronization analysis of Lurie dynamical networks
Guo Ling (郭凌), Nian Xiao-Hong (年晓红), Pan Huan (潘欢), Bing Zhi-Tong (邴志桐). Chin. Phys. B, 2014, 23(4): 040501.
[6] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[7] Impulsive stabilization of a class of nonlinear system with bounded gain error
Ma Tie-Dong (马铁东), Zhao Fei-Ya (赵飞亚). Chin. Phys. B, 2014, 23(12): 120504.
[8] Cluster synchronization of uncertain complex networks with desynchronizing impulse
Cai Guo-Liang (蔡国梁), Jiang Sheng-Qin (姜胜芹), Cai Shui-Ming (蔡水明), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(12): 120505.
[9] Synchronization of impulsively coupled complex networks
Sun Wen(孙文), Chen Zhong(陈忠), and Chen Shi-Hua(陈士华) . Chin. Phys. B, 2012, 21(5): 050509.
[10] Impulsive synchronization of a nonlinear coupled complex network with a delay node
Sun Wen (孙文), Chen Zhong(陈忠), and Kang Yu-Hong(康玉红) . Chin. Phys. B, 2012, 21(1): 010504.
[11] Cluster synchronization in a network of non-identical dynamic systems
Wu Jian-She(吴建设), Jiao Li-Cheng(焦李成), and Chen Guan-Rong(陈关荣). Chin. Phys. B, 2011, 20(6): 060503.
[12] Impulsive control of chaotic systems and its applications in synchronization
Wu Bo(吴波), Liu Yang(刘洋), and Lu Jian-Quan(卢剑权). Chin. Phys. B, 2011, 20(5): 050508.
[13] Stochastic impulsive control for the stabilization of Lorenz system
Wang Liang(王亮), Zhao Rui(赵锐), Xu Wei(徐伟), and Zhang Ying(张莹) vgluept . Chin. Phys. B, 2011, 20(2): 020506.
[14] Modified impulsive synchronization of fractional order hyperchaotic systems
Fu Jie(浮洁), Yu Miao(余淼), and Ma Tie-Dong(马铁东) . Chin. Phys. B, 2011, 20(12): 120508.
[15] An improved impulsive control approach to robust lag synchronization between two different chaotic systems
Ma Tie-Dong(马铁东), Fu Jie(浮洁), and Sun Yue(孙跃). Chin. Phys. B, 2010, 19(9): 090502.
No Suggested Reading articles found!