Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117505    DOI: 10.1088/1674-1056/27/11/117505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetism induced by Mn atom doping in SnO monolayer

Ruilin Han(韩瑞林)1, Yu Yan(闫羽)2
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
2 Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China
Abstract  

The structural, magnetic properties, and mechanism of magnetization of SnO monolayer doped with 3d transition metal Mn atom were studied using first-principles calculations. The calculated results show that the substitution doping is easier to realize under the condition of oxygen enrichment. Numerical results reveal that the spin-splitting defect state of the Mn doped system is produced in the band gap and the magnetic moment of 5.0 μB is formed. The induced magnetic moment by Mnsub is mostly derived from the 3d orbital of the doped Mn atom. The magnetic coupling between magnetic moments caused by two Mn atoms in SnO monolayer is a long-range ferromagnetic, which is due to the hole-mediated p-p and p-d interactions. The calculated results suggest that room-temperature ferromagnetism in a SnO monolayer can be induced after substitutional doping of a Mn atom.

Keywords:  SnO monolayer      ferromagnetism      first-principles      doping  
Received:  21 July 2018      Revised:  05 September 2018      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  75.50.Pp (Magnetic semiconductors)  
  75.75.Lf (Electronic structure of magnetic nanoparticles)  
Corresponding Authors:  Ruilin Ha     E-mail:  hanruilin0116@sxu.edu.cn

Cite this article: 

Ruilin Han(韩瑞林), Yu Yan(闫羽) Magnetism induced by Mn atom doping in SnO monolayer 2018 Chin. Phys. B 27 117505

[1] Novoselov K, Geim A, Morozo S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science 306 666
[2] Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S and Firsov A 2005 Nature 438 197
[3] Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo J, Miyamoto Y, Geohegan D and Xiao K 2013 Nano Lett. 13 1649
[4] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[5] Ma Y, Dai Y, Guo M, Niu C, Lu J and Huang B 2011 Phys. Chem. Chem. Phys. 13 15546
[6] Wang Q, Zadeh K, Kis A, Coleman J and Strano M 2012 Nat. Nanotechnol. 7 699
[7] Tongay S, Zhou J, Ataca C, Lo K, Matthews T, Li J, Grossman J and Wu J 2012 Nano Lett. 12 5576
[8] Li X and Yang J 2014 J. Mater. Chem. C 2 7071
[9] Keyshar K, Gong Y, Ye G, Brunetto G, Zhou W, Cole D, Hackenberg K, He Y, Machado L, Kabbani M, Hart A, Li B, Galvao D, George A, Vajtai R, Tiwary C and Ajayan P 2015 Adv. Mater. 27 4640
[10] Zheng H, Zhang J, Yang S, Du X and Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341
[11] Marks T J and Hersam M C 2015 Nature 520 7549
[12] Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
[13] Osada M and Sasaki T 2009 J. Mater. Chem. 19 2503
[14] Omomo Y, Sasaki T, Wang T, Watanabe and M 2003 J. Am. Chem. Soc. 125 3568
[15] Osada M, Itose M, Ebina Y, Ono K, Ueda S, Kobayashi K and Sasaki T 2008 Appl. Phys. Lett. 92 253110
[16] Kotani Y, Taniuchi T, Osada M, Sasaki T, Kotsugi M, Guo, F Z, Watanabe Y, Kubota M and Ono K 2008 Appl. Phys. Lett. 93 093112
[17] Osada M, Ebina Y, Fukuda K, Ono K, Takada K, Yamaura K, Takayama-Muromachi E and Sasaki T 2006 Phys. Rev. B 73 153301
[18] Ma R and Sasaki T 2010 Adv. Mater. 22 5082
[19] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S and Smith R J 2011 Science 331 568
[20] Pannetier J and Denes G 1980 Acta Crystallogr. B 36 2763
[21] Pan X Q and Fu L J 2001 J. Electroceram. 7 35
[22] Saji K J, Tian K, Snure M and Tiwari A 2016 Adv. Electron. Mater. 2 1500453
[23] Quackenbush N F, Allen J P, Scanlon D O, Sallis S, Hewlett J A, Nandur A S, Chen B, Smith K E, Weil, C, Fischer D A, Woicik J C, White B E, Watson G W and Piper L F J 2013 Chem. Mater. 25 3114
[24] Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, Granato D B, Schwingenschlögl U and Alshareef H N 2013 ACS Nano 7 5160
[25] Liang L Y, Cao H T, Chen X B, Liu Z M, Zhuge F, Luo H, Li J, Lu Y C and Lu W 2012 Appl. Phys. Lett. 100 263502
[26] Chen P C, Chiu Y C, Zheng Z W, Cheng C H and Wu Y H 2016 Phys. Status Solidi RRL 10 919
[27] Ma Z, Wang B, Ou L, Zhang Y, Zhang X and Zhou Z 2016 Nanotechnology 27 415203
[28] Nomura K, Kamiya T and Hosono H 2011 Adv. Mater. 23 3431
[29] Hosono H, Ogo Y, Yanagi H and Kamiya T 2011 Electrochem. Solid-State Lett. 14 H13
[30] Seixas L, Rodin A S, Carvalho A and Neto A H C 2016 Phys. Rev. Lett. 116 206803
[31] Tao J G and Guan L X 2017 Sci. Rep. 7 44568
[32] Hassan Farooq M, Hussain Riaz, Zhang L E, Aslam I, Tanveer M, Shah M W and Zubair Iqbal M 2014 Mater. Lett. 131 350
[33] Houssa M, Iordanidou K, Pourtois G, Afanas'ev V V and Stesmans A 2018 AIP Adv. 8 055010
[34] Seixas L, Rodin A S, Carvalho A and Neto A H 2016 Phys. Rev. Lett. 116 206803
[35] Wang Y R, Li S and Yi J B 2018 J. Phys. Chem. C 122 4651
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[38] Perdew J P, J Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
[40] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[41] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
[42] Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A and Ceder G 2011 Phys. Rev. B 84 045115
[43] Izumi F 1981 Solid State Chem. 38 381
[44] Seixas L, Rodin A S, Carvalho A and Neto A H C 2016 Phys. Rev. Lett. 116 206803
[45] Izumi F 1981 J. Solid State Chem. 38 381
[46] Varley J B, Schleife A, Janotti A and Van de Walle C G 2013 Appl. Phys. Lett. 103 082118
[47] Zhou W and Umezawa N 2015 Phys. Chem. Chem. Phys. 17 17816
[48] Granato D B, Albar A and Schwingenschlogl U 2014 Europhys. Lett. 106 16001
[49] Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
[50] Long R N 2009 Phys. Rev. B 80 115212
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[11] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[12] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[13] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[14] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[15] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
No Suggested Reading articles found!