CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetism induced by Mn atom doping in SnO monolayer |
Ruilin Han(韩瑞林)1, Yu Yan(闫羽)2 |
1 College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China;
2 Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract The structural, magnetic properties, and mechanism of magnetization of SnO monolayer doped with 3d transition metal Mn atom were studied using first-principles calculations. The calculated results show that the substitution doping is easier to realize under the condition of oxygen enrichment. Numerical results reveal that the spin-splitting defect state of the Mn doped system is produced in the band gap and the magnetic moment of 5.0 μB is formed. The induced magnetic moment by Mnsub is mostly derived from the 3d orbital of the doped Mn atom. The magnetic coupling between magnetic moments caused by two Mn atoms in SnO monolayer is a long-range ferromagnetic, which is due to the hole-mediated p-p and p-d interactions. The calculated results suggest that room-temperature ferromagnetism in a SnO monolayer can be induced after substitutional doping of a Mn atom.
|
Received: 21 July 2018
Revised: 05 September 2018
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.75.Lf
|
(Electronic structure of magnetic nanoparticles)
|
|
Corresponding Authors:
Ruilin Ha
E-mail: hanruilin0116@sxu.edu.cn
|
Cite this article:
Ruilin Han(韩瑞林), Yu Yan(闫羽) Magnetism induced by Mn atom doping in SnO monolayer 2018 Chin. Phys. B 27 117505
|
[1] |
Novoselov K, Geim A, Morozo S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science 306 666
|
[2] |
Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S and Firsov A 2005 Nature 438 197
|
[3] |
Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo J, Miyamoto Y, Geohegan D and Xiao K 2013 Nano Lett. 13 1649
|
[4] |
Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
|
[5] |
Ma Y, Dai Y, Guo M, Niu C, Lu J and Huang B 2011 Phys. Chem. Chem. Phys. 13 15546
|
[6] |
Wang Q, Zadeh K, Kis A, Coleman J and Strano M 2012 Nat. Nanotechnol. 7 699
|
[7] |
Tongay S, Zhou J, Ataca C, Lo K, Matthews T, Li J, Grossman J and Wu J 2012 Nano Lett. 12 5576
|
[8] |
Li X and Yang J 2014 J. Mater. Chem. C 2 7071
|
[9] |
Keyshar K, Gong Y, Ye G, Brunetto G, Zhou W, Cole D, Hackenberg K, He Y, Machado L, Kabbani M, Hart A, Li B, Galvao D, George A, Vajtai R, Tiwary C and Ajayan P 2015 Adv. Mater. 27 4640
|
[10] |
Zheng H, Zhang J, Yang S, Du X and Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341
|
[11] |
Marks T J and Hersam M C 2015 Nature 520 7549
|
[12] |
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
|
[13] |
Osada M and Sasaki T 2009 J. Mater. Chem. 19 2503
|
[14] |
Omomo Y, Sasaki T, Wang T, Watanabe and M 2003 J. Am. Chem. Soc. 125 3568
|
[15] |
Osada M, Itose M, Ebina Y, Ono K, Ueda S, Kobayashi K and Sasaki T 2008 Appl. Phys. Lett. 92 253110
|
[16] |
Kotani Y, Taniuchi T, Osada M, Sasaki T, Kotsugi M, Guo, F Z, Watanabe Y, Kubota M and Ono K 2008 Appl. Phys. Lett. 93 093112
|
[17] |
Osada M, Ebina Y, Fukuda K, Ono K, Takada K, Yamaura K, Takayama-Muromachi E and Sasaki T 2006 Phys. Rev. B 73 153301
|
[18] |
Ma R and Sasaki T 2010 Adv. Mater. 22 5082
|
[19] |
Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S and Smith R J 2011 Science 331 568
|
[20] |
Pannetier J and Denes G 1980 Acta Crystallogr. B 36 2763
|
[21] |
Pan X Q and Fu L J 2001 J. Electroceram. 7 35
|
[22] |
Saji K J, Tian K, Snure M and Tiwari A 2016 Adv. Electron. Mater. 2 1500453
|
[23] |
Quackenbush N F, Allen J P, Scanlon D O, Sallis S, Hewlett J A, Nandur A S, Chen B, Smith K E, Weil, C, Fischer D A, Woicik J C, White B E, Watson G W and Piper L F J 2013 Chem. Mater. 25 3114
|
[24] |
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, Granato D B, Schwingenschlögl U and Alshareef H N 2013 ACS Nano 7 5160
|
[25] |
Liang L Y, Cao H T, Chen X B, Liu Z M, Zhuge F, Luo H, Li J, Lu Y C and Lu W 2012 Appl. Phys. Lett. 100 263502
|
[26] |
Chen P C, Chiu Y C, Zheng Z W, Cheng C H and Wu Y H 2016 Phys. Status Solidi RRL 10 919
|
[27] |
Ma Z, Wang B, Ou L, Zhang Y, Zhang X and Zhou Z 2016 Nanotechnology 27 415203
|
[28] |
Nomura K, Kamiya T and Hosono H 2011 Adv. Mater. 23 3431
|
[29] |
Hosono H, Ogo Y, Yanagi H and Kamiya T 2011 Electrochem. Solid-State Lett. 14 H13
|
[30] |
Seixas L, Rodin A S, Carvalho A and Neto A H C 2016 Phys. Rev. Lett. 116 206803
|
[31] |
Tao J G and Guan L X 2017 Sci. Rep. 7 44568
|
[32] |
Hassan Farooq M, Hussain Riaz, Zhang L E, Aslam I, Tanveer M, Shah M W and Zubair Iqbal M 2014 Mater. Lett. 131 350
|
[33] |
Houssa M, Iordanidou K, Pourtois G, Afanas'ev V V and Stesmans A 2018 AIP Adv. 8 055010
|
[34] |
Seixas L, Rodin A S, Carvalho A and Neto A H 2016 Phys. Rev. Lett. 116 206803
|
[35] |
Wang Y R, Li S and Yi J B 2018 J. Phys. Chem. C 122 4651
|
[36] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[37] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[38] |
Perdew J P, J Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[39] |
Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
|
[40] |
Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
|
[41] |
Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
|
[42] |
Jain A, Hautier G, Ong S P, Moore C J, Fischer C C, Persson K A and Ceder G 2011 Phys. Rev. B 84 045115
|
[43] |
Izumi F 1981 Solid State Chem. 38 381
|
[44] |
Seixas L, Rodin A S, Carvalho A and Neto A H C 2016 Phys. Rev. Lett. 116 206803
|
[45] |
Izumi F 1981 J. Solid State Chem. 38 381
|
[46] |
Varley J B, Schleife A, Janotti A and Van de Walle C G 2013 Appl. Phys. Lett. 103 082118
|
[47] |
Zhou W and Umezawa N 2015 Phys. Chem. Chem. Phys. 17 17816
|
[48] |
Granato D B, Albar A and Schwingenschlogl U 2014 Europhys. Lett. 106 16001
|
[49] |
Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
|
[50] |
Long R N 2009 Phys. Rev. B 80 115212
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|