Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086101    DOI: 10.1088/1674-1056/25/8/086101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays

Li-Zhong He(何丽忠), Li-Rong Qin(秦丽溶), Jian-Wei Zhao(赵建伟), Ying-Ying Yin(殷营营), Yu Yang(杨瑜), Guo-Qing Li(李国庆)
School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Abstract  Ordered Ni/Au multilayer nanowire arrays are successfully fabricated inside the nanochannels of anodic aluminum oxide template by pulse electrodeposition method. The thickness of the alternating layers is controlled to examine the magnetostatic interaction in Ni/Au multilayer nanowires. The magnetic easy axis parallel to the nanowires indicates that here the magnetostatic coupling along the wire axis dominates over the interactions perpendicular to the nanowires. However, the magnetostatic interaction between adjacent nanowires with larger magnetic layers is enhanced, leading to the existence of an optimum coercivity value.
Keywords:  nanostructures      multilayers materials      metals      magnetic properties  
Received:  10 February 2016      Revised:  12 April 2016      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  75.75.Cd (Fabrication of magnetic nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204246) and the Natural Science Foundation of CQCSTC (Grant No. cstc2014jcyjA50027).
Corresponding Authors:  Li-Rong Qin     E-mail:  lrqin@swu.edu.cn

Cite this article: 

Li-Zhong He(何丽忠), Li-Rong Qin(秦丽溶), Jian-Wei Zhao(赵建伟), Ying-Ying Yin(殷营营), Yu Yang(杨瑜), Guo-Qing Li(李国庆) Magnetostatic interaction in electrodeposited Ni/Au multilayer nanowire arrays 2016 Chin. Phys. B 25 086101

[1] Choi J, Oh S J, Ju H and Cheon J 2005 Nano Lett. 5 2179
[2] Baibich M N, Broto J M, Fert A, Nguyen F V D, Petroff E, Etienne P, Greuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[3] Prinz G A 1998 Science 282 1660
[4] Dieny B 1994 J. Magn. Magn. Mater. 136 335
[5] Herderick E D, Reddy K M, Sample R N, Draskovic T I and Padture N P 2009 Appl. Phys. Lett. 95 203505
[6] Jun Y W, Choi J S and Cheon J 2006 Angew. Chem. Int. Ed. 45 3414
[7] Hu J T, Odom T W and Lieber C M 1999 ACC Chem. Res. 32 435
[8] Ishrat S, Maaz K, Lee K J, Jung M H and Kim G H 2014 J. Solid State Chem. 210 116
[9] Liu R S, Chang S C, Hu S F and Huang C Y 2006 Phys. Stat. Sol. (c) 3 1339
[10] Maleak N, Potpattanapol P, Bao N N, Ding J, Wongkokuo W, Tang I M and Thongmee S 2014 J. Magn. Magn. Mater. 354 262
[11] Tang X T, Wang G C and Shima M 2007 J. Magn. Magn. Mater. 309 188
[12] Krimpalis S, Dragos O G, Moga A E, Lupu N and Chiriac H J 2011 Mater. Res. 26 1081
[13] Chiriac H, Ó VáRi T A and Pascariu P 2008 J. Appl. Phys. 103 07D919
[14] Peng Y, Cullis T, Luxmoore I and Inkson B 2011 Nanotechnology 22 245709
[15] Liu F, Lee J Y and Zhou W 2004 J. Phys. Chem. 108 17959
[16] Clime L, Zhao S Y, Chen P, Normandin F, Roberge H and Veres T 2007 Nanotechnology 18 435709
[17] Schelhas L T, Banholzer M J, Mirkin C A and Tolbert S H 2015 J. Magn. Magn. Mater. 379 239
[18] Qin L R, Zhao J W, Guo Q, Yan Z K, Mu F, Chen P and Li G Q 2013 Physica E 50 17
[19] Han G C, Zong B Y, Luo P and Wub Y H 2003 J. Appl. Phys. 93 9202
[20] Zhang J J, Li Z Y, Zhang H M, Hou X and Sun H Y 2013 Chin. Phys. B 22 087805
[21] Yan Z K, Zhao J W, Qin L R, Mu F, Wang P and Feng X N 2013 Microchim. Acta 180 145
[22] Cho J U, Liu Q X, Min J H, Ko S P and Kim Y K 2006 J. Magn. Magn. Mater. 304 e213
[23] Lavín R, Denardin J C, Escrig J, Altbir D, Cortés A and Gómez H 2009 J. Appl. Phys. 106 103903
[24] Almasi-Kashi M, Ramazani A, Kheyri F and Jafari-Khamse E 2014 Mater. Chem. Phys. 144 230
[25] Tian F, Zhu J and Wei D 2007 J. Phys. Chem. C 111 12669
[26] Tang X T, Wang G C and Shima M 2006 IEEE T. Magn. 42 2975
[1] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[2] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[6] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[7] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[8] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[9] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[10] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[11] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[12] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[13] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[14] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!