|
|
Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy |
Aiji Liang(梁爱基)1, Chaoyu Chen(陈朝宇)1, Zhijun Wang(王志俊)1, Youguo Shi(石友国)1, Ya Feng(冯娅)1, Hemian Yi(伊合绵)1, Zhuojin Xie(谢卓晋)1, Shaolong He(何少龙)1, Junfeng He(何俊峰)1, Yingying Peng(彭莹莹)1, Yan Liu(刘艳)1, Defa Liu(刘德发)1, Cheng Hu(胡成)1, Lin Zhao(赵林)1, Guodong Liu(刘国东)1, Xiaoli Dong(董晓莉)1, Jun Zhang(张君)1, M Nakatake2, H Iwasawa2, K Shimada2, M Arita2, H Namatame2, M Taniguchi2, Zuyan Xu(许祖彦)3, Chuangtian Chen(陈创天)3, Hongming Weng(翁红明)1,4, Xi Dai(戴希)1,4, Zhong Fang(方忠)1,4, Xing-Jiang Zhou(周兴江)1,4 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima City, 739-0046, Japan;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing, China |
|
|
Abstract The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the kx-ky plane and by varying the photon energy to get access to different out-of-plane kzs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ~150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface.
|
Received: 12 May 2016
Revised: 03 June 2016
Accepted manuscript online:
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
79.60.Bm
|
(Clean metal, semiconductor, and insulator surfaces)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574367), the National Basic Research Program of China (Grant Nos. 2013CB921700, 2013CB921904, and 2015CB921300), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020300). The synchrotron radiation experiments have been done under the HiSOR Proposal numbers, 12-B-47 and 13-B-16. |
Corresponding Authors:
Shaolong He, Xing-Jiang Zhou
E-mail: XJZhou@aphy.iphy.ac.cn;shaolonghe@aphy.iphy.ac.cn
|
Cite this article:
Aiji Liang(梁爱基), Chaoyu Chen(陈朝宇), Zhijun Wang(王志俊), Youguo Shi(石友国), Ya Feng(冯娅), Hemian Yi(伊合绵), Zhuojin Xie(谢卓晋), Shaolong He(何少龙), Junfeng He(何俊峰), Yingying Peng(彭莹莹), Yan Liu(刘艳), Defa Liu(刘德发), Cheng Hu(胡成), Lin Zhao(赵林), Guodong Liu(刘国东), Xiaoli Dong(董晓莉), Jun Zhang(张君), M Nakatake, H Iwasawa, K Shimada, M Arita, H Namatame, M Taniguchi, Zuyan Xu(许祖彦), Chuangtian Chen(陈创天), Hongming Weng(翁红明), Xi Dai(戴希), Zhong Fang(方忠), Xing-Jiang Zhou(周兴江) Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy 2016 Chin. Phys. B 25 077101
|
[1] |
Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
|
[2] |
Turner A M and Vishwanath 2013 arXiv:1301.0330
|
[3] |
Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
|
[4] |
Weng H, Dai X and Fang Z 2014 MRS Bulletin 39 849
|
[5] |
Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 185 20
|
[6] |
Nielsen H B and Ninomiya M 1981 Nucl. Phys. B 193 173
|
[7] |
Murakami S 2007 New J. Phys. 9 356
|
[8] |
Murakami S 2011 Physica E 43 748
|
[9] |
Balents L 2011 Physics 4 36
|
[10] |
Xu G, Weng H, Wang Z, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806
|
[11] |
Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
|
[12] |
Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
|
[13] |
Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
|
[14] |
Halasz G B and Balents L 2012 Phys. Rev. B 85 035103
|
[15] |
Young S M, Zaheer S, Teo J C Y, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
|
[16] |
Wang Z, Sun Y, Chen X, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
|
[17] |
Liu Z, Zhou B, Zhang Y, Wang Z, Weng H, Prabhakaran D, Mo S K, Shen Z, Fang Z, Dai X, Hussain Z and Chen Y 2014 Science 343 864
|
[18] |
Zhang Y, Liu Z, Zhou B, Kim Y, Hussain Z, Shen Z, Chen Y and Mo S K 2014 Appl. Phys. Lett. 105 031901
|
[19] |
Wen J, Guo H, Yan C, Wang Z, Chang K, Deng P, Zhang T, Zhang Z, Ji S, Wang L, He K, Ma X, Chen X and Xue Q 2014 Chin. Phys. Lett. 31 116802
|
[20] |
Wen J, Guo H, Yan C, Wang Z, Chang K, Deng P, Zhang T, Zhang Z, Ji S, Wang L, He K, Ma X, Chen X and Xue Q 2015 Applied Surface Science 327 213
|
[21] |
Xu S, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopplski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H J, Huang C, Tsai W, Lin H, Shibayev P P, Chou F, Cava R J and Hasan M Z 2015 Science 347 294
|
[22] |
Xu S, Liu C, Belopolski I, Kushwaha S K, Sankar R, Krizan J W, Chang T R, Polley C M, Adell J, Balasubramanian T, Miyamoto K, Alidoust N, Bian G, Neupane M, Jeng H J, Huang C, Tsai W, Okuda T, Bansil A, Chou F, Cava R J, Lin H and Hasan M Z 2015 Phys. Rev. B 92 075115
|
[23] |
Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 6259
|
[24] |
Kushwaha S K, Krizan J W, Feldman B E, Gyenls A, Randerla M, Xiong J, Xu S-Y, Aldoust N, Belopolski I, Liang T, Hasan M Z, Ong N P, Yazdani A and Cava R J 2015 APL Mater. 3 041504
|
[25] |
Gorbar E V, Miransky V A, Shovkovy I A and Sukhachov P O 2015 Phys. Rev. B 91 235138
|
[26] |
Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
|
[27] |
Liu Z, Jiang J, Zhou B, Wang Z, Zhang Y, Weng H, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z, Feng D, Hussain Z and Chen Y 2014 Nat. Mater. 13 677
|
[28] |
Neupane M, Xu S, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
|
[29] |
Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V and Cava R J 2014 Phys. Rev. Lett. 113 027603
|
[30] |
Yi H, Wang Z, Chen C, Shi Y, Feng Y, Liang A, Xie Z, He S, He J, Peng Y, Liu X, Liu Y, Zhao L, Liu G, Dong X, Zhang J, Nakatake M, Arita M, Shimada K, Namatame H, Taniguchi M, Xu Z, Chen C, Dai X, Fang Z and Zhou X 2014 Scientific Reports 4 6106
|
[31] |
Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Nat. Mater. 13 851
|
[32] |
He L, Hong X, Dong J, Pan J, Zhang Z, Zhang J and Li S 2014 Phys. Rev. Lett. 113 246402
|
[33] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[34] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[35] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[36] |
Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
|
[37] |
Weyl H 1929 Z. Phys. 56 330
|
[38] |
Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
|
[39] |
Huang S, Xu S, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
|
[40] |
Lv B, Weng H, Fu B, Wang X, Ma J, Richard P, Huang X, Zhao L, Chen G, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Phys. Rev. X 5 031013
|
[41] |
Lv B, Xu N, Weng H, Ma J, Richard P, Huang X, Zhao L, Chen G, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
|
[42] |
Xu S, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jua S and Hasan M Z 2015 Science 349 613
|
[43] |
Yang L, Liu Z, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B and Chen Y 2015 Nat. Phys. 11 9
|
[44] |
Xu D, Du Y, Wang, Z, Li Y, Niu X, Yao Q, Pavel D, Xu Z, Wan X and Feng D 2015 Chin. Phys. Lett. 32 107101
|
[45] |
Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljacic M 2015 Science 349 622
|
[46] |
Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z and Zhou X 2008 Rev. Sci. Instru. 79 023105
|
[47] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[48] |
Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J WIEN2K Package
|
[49] |
Hufner J 1985 Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer-Verlag) pp. 353-357
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|