Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060503    DOI: 10.1088/1674-1056/25/6/060503
GENERAL Prev   Next  

Exploring the relationship between fractal features and bacterial essential genes

Yong-Ming Yu(余永明)1, Li-Cai Yang(杨立才)1, Qian Zhou(周茜)2,3, Lu-Lu Zhao(赵璐璐)1, Zhi-Ping Liu(刘治平)1
1 Department of Biomedical Engineering, Shandong University, Jinan 250061, China;
2 Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130, China;
3 Department of Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  

Essential genes are indispensable for the survival of an organism in optimal conditions. Rapid and accurate identifications of new essential genes are of great theoretical and practical significance. Exploring features with predictive power is fundamental for this. Here, we calculate six fractal features from primary gene and protein sequences and then explore their relationship with gene essentiality by statistical analysis and machine learning-based methods. The models are applied to all the currently available identified genes in 27 bacteria from the database of essential genes (DEG). It is found that the fractal features of essential genes generally differ from those of non-essential genes. The fractal features are used to ascertain the parameters of two machine learning classifiers: Naïve Bayes and Random Forest. The area under the curve (AUC) of both classifiers show that each fractal feature is satisfactorily discriminative between essential genes and non-essential genes individually. And, although significant correlations exist among fractal features, gene essentiality can also be reliably predicted by various combinations of them. Thus, the fractal features analyzed in our study can be used not only to construct a good essentiality classifier alone, but also to be significant contributors for computational tools identifying essential genes.

Keywords:  fractal features      bacteria      essential gene      machine learning  
Received:  19 December 2015      Revised:  27 February 2016      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  87.14.G- (Nucleic acids)  
Fund: 

Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014FM022).

Corresponding Authors:  Li-Cai Yang     E-mail:  yanglc@sdu.edu.cn

Cite this article: 

Yong-Ming Yu(余永明), Li-Cai Yang(杨立才), Qian Zhou(周茜), Lu-Lu Zhao(赵璐璐), Zhi-Ping Liu(刘治平) Exploring the relationship between fractal features and bacterial essential genes 2016 Chin. Phys. B 25 060503

[1] Winzeler E A, Shoemaker D D and Astromoff A, et al. 1999 Science 285 901
[2] Furney S J, Alb M M and Lopez-Bigas N 2006 BMC Genomics 7 165
[3] Clatworthy A E, Pierson E and Hung D T 2007 Nat. Chem. Biol. 3 541
[4] Glass J I, Hutchison C A, Smith H O and Venter J C 2009 Mol. Syst. Biol. 5 330
[5] Gibson D G, Glass J I and Lartigue C, et al. 2010 Science 329 52
[6] Kamath R S, Fraser A G, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman D P, Zipperlen P and Ahringer J 2003 Nature 421 231
[7] Giaever G, Chu A M, Ni L et al. 2002 Nature 418 387
[8] Gallagher L A, Ramage E, Jacobst M A, Kaul R, Brittnacher M and Manoil C 2007 P. Natl. Acad. Sci. USA 104 1009
[9] Tong X, Campbell J W, Bal A Zsi G A B, Kay K A, Wanner B L, Gerdes S Y and Oltvai Z N 2004 Biochem. Bioph. Res. Co. 322 347
[10] Antonia Molina Henares M, de la Torre J, Garcia Salamanca A, Jesus Molina Henares A, Carmen Herrera M, Ramos J L and Duque E 2010 Environ. Microbiol. 12 1468
[11] Gustafson A M, Snitkin E S, Parker S C, Delisi C and Kasif S 2006 BMC Genomics 7 265
[12] Jehl M A, Arnold R and Rattei T 2011 Nucleic Acids Res. 391 D591
[13] Saha S, Heber S and Others Genet. Mol. Res. 5 224
[14] Sharp P M 1991 J. Mol. Evol. 33 23
[15] Li M, Zheng R, Zhang H, Wang J and Pan Y 2014 Methods 67 325
[16] Rocha E P and Danchin A 2003 Nat. Genet. 34 377
[17] P A L C, Papp B A Z and Hurst L D 2003 Nature 421 496
[18] Lin Y, Gao F and Zhang C T 2010 Biochem. Bioph. Res. Co. 396 472
[19] Hawoong J, Zoltan N O and Albert-Laszlo B 2003 ComPlexus 1 19
[20] Han G S, Yu Z G and Vo A 2011 Chin. Phys. B 20 100504
[21] Hwang Y C, Lin C C, Chang J Y, Mori H, Juan H F and Huang H C 2009 Mol. Biosyst. 5 1672
[22] Wang J X, Peng W and Wu F X 2013 Proteom. Clin. Appl. 7 181
[23] Ning K, Ng H K, Srihari S, Leong H W and Nesvizhskii A I 2010 BMC Bioinformatics 11 505
[24] Acencio M L and Lemke N 2009 BMC Bioinformatics 10 290
[25] Seringhaus M, Paccanaro A, Borneman A, Snyder M and Gerstein M 2006 Genome Res. 16 1126
[26] Wunderlich Z and Mirny L A 2006 Biophys. J. 91 2304
[27] Estrada E and Rodriguez-Velazquez J A 2005 Phys. Rev. E 71 56103
[28] Yu Z G, Xiao Q J, Shi L, Wu Y J and Anh V 2010 Chin. Phys. B 19 068701
[29] Yu Z G, Anh V, Min G Z and Long S C 2002 Chin. Phys. 11 1313
[30] Zhu S M, Yu Z G and Vo A 2011 Chin. Phys. B 20 100505
[31] Zhou Q and Yu Y M 2014 Chaos, Solitons and Fractals 69 209
[32] Zhou Q and Yu Y M 2014 J. Phys. D: Appl. Phys. 47 465401
[33] Jeffrey H J 1990 Nucleic Acids Res. 18 2163
[34] Randic M 2008 Chem. Phys. Lett. 456 84
[35] Yu Z G, Anh V and Lau K S 2004 J. Theor. Biol. 226 341
[36] Palaniappan K and Mukherjee S 2011 10th International Conference on Machine Learning and Applications and Workshops (ICMLA), Honolulu, Hawaii, USA, p. 189
[37] Ning L W, Lin H, Ding H, Huang J, Rao N and Guo F B 2014 Genet. Mol. Res 13 4564
[38] Tang X, Wang J, Zhong J and Pan Y 2014 IEEEACM Trans. Comput. Biol. Bioinform. 11 407
[39] Yu H Y, Greenbaum D, Lu H X, Zhu X W and Gerstein M 2004 Trends Genet. 20 227
[40] Deng J, Deng L, Su S, Zhang M, Lin X, Wei L, Minai A A, Hassett D J and Lu L J 2011 Nucleic Acids Res. 39 795
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[5] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[6] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[9] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[10] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[11] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[12] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[13] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[14] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[15] Entrainment mechanism of the cyanobacterial circadian clock induced by oxidized quinone
Ying Li(李莹), Guang-Kun Zhang(张广鹍), Zi-Gen Song(宋自根). Chin. Phys. B, 2020, 29(9): 098703.
No Suggested Reading articles found!