Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060504    DOI: 10.1088/1674-1056/25/6/060504
GENERAL Prev   Next  

H synchronization of the coronary artery system with input time-varying delay

Xiao-Meng Li(李晓蒙)1, Zhan-Shan Zhao(赵占山)1, Jing Zhang(张静)2,3, Lian-Kun Sun(孙连坤)1
1 School of Computer Science & Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2 School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China;
3 Tianjin Vocational Institute, Tianjin 300410, China
Abstract  

This paper investigates the H synchronization of the coronary artery system with input delay and disturbance. We focus on reducing the conservatism of existing synchronization strategies. Base on the triple integral forms of the Lyapunov-Krasovskii functional (LKF), we utilize single and double integral forms of Wirtinger-based inequality to guarantee that the synchronization feedback controller has good performance against time-varying delay and external disturbance. The effectiveness of our strategy can be exhibited by simulations under the different time-varying delays and different disturbances.

Keywords:  coronary artery system      chaotic system      H synchronization      input delay  
Received:  07 January 2016      Revised:  29 January 2016      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lr (Control theory and feedback)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61503280, 61403278, and 61272006).

Corresponding Authors:  Zhan-Shan Zhao     E-mail:  zhzhsh127@163.com

Cite this article: 

Xiao-Meng Li(李晓蒙), Zhan-Shan Zhao(赵占山), Jing Zhang(张静), Lian-Kun Sun(孙连坤) H synchronization of the coronary artery system with input time-varying delay 2016 Chin. Phys. B 25 060504

[1] Zhang Q H Y, Xie X P, Zhu P, Chen H P and He G G 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2793
[2] Li L, Sun G Q and Jin Z 2010 Appl. Math. Comput. 216 1226
[3] Li W L 2012 Int. J. Sys. Sci. 43 21
[4] Xu Z Yand Liu C R 1986 J. Biomath. 1 109
[5] Gong C Y, Li Y M and Sun X H 2006 J. Appl. Sci. 24 604
[6] Gong C Y, Li Y M and Sun X H 2008 Math. Prac. Theor. 38 103
[7] Lin C J, Yang S K and Yau H T 2012 Comput. Math. Appl. 64 988
[8] Zhao Z S, Zhang J, Ding G and Zhang D K 2015 Acta Phys. Sin. 64 210508 (in Chinese)
[9] Wen S P, Zeng Z G, Huang T W, Meng Q G and Yao W 2015 IEEE Trans. Neur. Netw. Learning Sys. 26 1493
[10] Wen S, Yu X, Zeng Z and Wang J 2016 IEEE Trans. Indus. Electron. 63 1308
[11] Wen S P, Zeng Z G, Huang T W, Yu X H and Xiao M Q 2015 IEEE Trans. Fuzzy Sys. 23 2284
[12] Li H, Gao Y, Shi P and Lam H K 2015 IEEE Trans. Autom. Control DOI: 10.1109TAC.2015.2503566
[13] Seuret A and Gouaisbaut F 2013 Automatica 49 2860
[14] Park M J, Kwon O M, Park J H, Lee S M and Cha E J 2015 Automatica 55 204
[15] Zhou Q, Shi P, Tian Y and Wang M Y 2015 IEEE Trans. Cybern. 45 2119
[16] Wang T, Gao H and Qiu J 2016 IEEE Trans. Indus. Electron. 63 2529
[17] Wang T, Gao H and Qiu J 2016 IEEE Trans. Neur. Netw. Learning Sys. 27 416
[18] Zhou Q, Li H Y and Shi P 2015 IEEE Trans. Fuzzy Sys. 23 501
[19] Li H, Wu C, Yin S and Lam H K 2015 IEEE Trans. Fuzzy Sys. Issue 99
[20] Xie X P, Yue D S and Ma H J 2014 IEEE Trans. Fuzzy Sys. 22 1174
[21] Zhou Q, Wang L, Wu C, Li H and Du H 2016 IEEE Trans. Syst. Man Cybern. Syst.
[22] Liu J, Laghrouche S, Harmouche M and Wack M 2014 Control Eng. Prac. 30 124
[23] Liu J, Laghrouche S and Wack M C 2014 Int. J. Control 87 1117
[24] Ding S H, Wang J D and Zheng W X 2015 IEEE Trans. Indus. Electron. 62 5899
[25] Zhou K, Wang Z H, Gao L K, Sun Y and Ma T D 2015 Chin. Phys. B 24 030504
[26] Liu S G and Chen L Q 2013 Chin. Phys. B 22 100506
[27] Park J H, Ji D H, Won S C and Lee S M 2008 Appl. Math. Comput. 204 170
[28] Park P G, Ko J W and Jeong C K 2011 Automatica 47 235
[29] Ghaoui L E, Oustry F and AitRami M 1997 IEEE Trans. Automat. Control 42 1171
[30] Gao H, Ding C, Song C and Mei J 2013 IEEE Trans. Indus. Inform. 93 1782
[31] Wang X, Gao H, Kaynak O and Sun W 2015 IEEEASME Trans. Mech. 21 339
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[13] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[14] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!