Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047303    DOI: 10.1088/1674-1056/25/4/047303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dirac operator on the sphere with attached wires

E N Grishanov1, D A Eremin1, D A Ivanov1, I Yu Popov2
1 Ogarev Mordovia State University Bolshevistskaya Str. 68, Saransk, Russia;
2 ITMO University, Kroverkskiy pr. 49, St. Petersburg, 197101, Russia
Abstract  

An explicitly solvable model for tunnelling of relativistic spinless particles through a sphere is suggested. The model operator is constructed by an operator extensions theory method from the orthogonal sum of the Dirac operators on a semi-axis and on the sphere. The transmission coefficient is obtained. The dependence of the transmission coefficient on the particle energy has a resonant character. One observes pairs of the Breit-Wigner and the Fano resonances. It correlates with the corresponding results for a non-relativistic particle.

Keywords:  Dirac operator      nanostructure      tunnelling      solvable model  
Received:  08 July 2015      Revised:  09 January 2016      Accepted manuscript online: 
PACS:  73.23.Ad (Ballistic transport)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  02.30.Tb (Operator theory)  
Fund: 

Project partially financially supported by the Funds from the Government of the Russian Federation (Grant No. 074-U01), the Funds from the Ministry of Education and Science of the Russian Federation (GOSZADANIE 2014/190) (Grant Nos. 14.Z50.31.0031 and 1.754.2014/K), and the President Foundation of the Russian Federation (Grant No. MK-5001.2015.1).

Corresponding Authors:  I Yu Popov     E-mail:  popov1955@gmail.com

Cite this article: 

E N Grishanov, D A Eremin, D A Ivanov, I Yu Popov Dirac operator on the sphere with attached wires 2016 Chin. Phys. B 25 047303

[1] Cai X J, Li Z L, Jiang G H, et al. 2013 Chin. Phys. Lett. 30 040501
[2] Clerk A A, Waintal X and Brouwer P W 2001 Phys. Rev. Lett. 86 4636
[3] Bulka B R and Stefanski P 2001 Phys. Rev. Lett. 86 5128
[4] Torio M E, Hallberg K, Ceccatto A H and Proetto C R 2002 Phys. Rev. B 65 085302
[5] Popov I Yu and Osipov S A 2012 Chin. Phys. B 21 117306
[6] Eremin D A, Grishanov E N, Ivanov D A, Lazutkina A A, Minkin E S and Popov I Yu 2014 Chin. J. Phys. 52 1119
[7] Geyler V A and Popov I Yu 1994 Phys. Lett. A 187 410
[8] Geyler V A and Popov I Yu 1996 Theor. Math. Phys. 107 427
[9] Geyler V A, Margulis V A and Pyataev M A 2003 J. Exper. Theor. Phys. 97 763
[10] Eremin D A, Ivanov D A and Popov I Yu 2012 Physica E 44 1598
[11] Gesztesy F and Seba P 1987 Lett. Math. Phys. 13 345
[12] Abrikosov A A Jr 2002 Int. J. Mod. Phys. A 17 885
[13] Albeverio S, Gesztes F, Hoegh-Krohn R, Holden H and Exner P 2005 Solvable Models in Quantum Mechanics, 2nd edn. (Providence, R.I.: AMS)
[14] Pavlov B S 1984 Teor. Mat. Fiz. 59 345
[15] Pavlov B S 1987 Russian Math. Surveys. 42 127
[16] Krein M G and Langer G K 1971 Functional Analysis and Its Applications 5 136
[17] Benvegnu S and Dabrowski L 1994 Lett. Math. Phys. 30 159
[18] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Boston: Birkhäuser)
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[5] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[6] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[7] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[8] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[9] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[10] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[11] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[14] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[15] Effects of electron correlation on superconductivity in the Hatsugai-Kohmoto model
Huai-Shuang Zhu(祝怀霜) and Qiang Han(韩强). Chin. Phys. B, 2021, 30(10): 107401.
No Suggested Reading articles found!