Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 036101    DOI: 10.1088/1674-1056/25/3/036101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

Gui-Li Zheng(郑桂丽)1,2,3, Hui Zhang(张辉)3, Wen-Jiang Ye(叶文江)3,Zhi-Dong Zhang(张志东)3, Hong-Wei Song(宋宏伟)4, Li Xuan(宣丽)1
1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Sciences, Hebei University of Technology, Tianjin 300401, China;
4. College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
Abstract  

Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ± 1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and-1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and-1 defects obtained in the experiment conducted by Kumar et al.

Keywords:  liquid crystal      flexoelectric effect      ? defects      Frank theory  
Received:  11 October 2015      Revised:  28 November 2015      Accepted manuscript online: 
PACS:  61.30.Jf (Defects in liquid crystals)  
  64.70.mf (Theory and modeling of specific liquid crystal transitions, including computer simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087, 11274088, and 11304074), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2016202282), the Research Project of Hebei Education Department, China (Grant Nos. QN2014130 and QN2015260), and the Key Subject Construction Project of Hebei Province University, China.

Corresponding Authors:  Gui-Li Zheng, Zhi-Dong Zhang     E-mail:  guili0919@163.com;zhidongzhang1961@163.com

Cite this article: 

Gui-Li Zheng(郑桂丽), Hui Zhang(张辉), Wen-Jiang Ye(叶文江),Zhi-Dong Zhang(张志东), Hong-Wei Song(宋宏伟), Li Xuan(宣丽) Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls 2016 Chin. Phys. B 25 036101

[1] Xie Y Z 1998 Physics of Liquid Crystal (Beijing: Science Press) (in chinese)
[2] Chandrasekhar S 1992 Liquid Crystals (2nd edn.) (Cambridge: Cambridge University Press)
[3] Krishnamurthy K S, Kumara P and Tadapatri P 2009 J. Indian Inst. Sci. 89 255
[4] Buka Á and Éber N 2013 Flexoelectricity in Liquid Crystal (London: Imperial College Press)
[5] Meyer R B 1969 Phys. Rev. Lett. 22 918
[6] Outram B I and Elston S J 2013 Appl. Phys. Lett. 103 141111
[7] Outram B I and Elston S J 2013 Phys. Rev. E 88 012506
[8] Guan R H, Ye W J and Xing H Y 2015 Chin. Phys. B 24 106102
[9] Ye W J, Xing H Y, Cui W J, Zhou X, Sun Y B and Zhang Z D 2015 Chin. Phys. B 24 116101
[10] Zheng G L, Zhang H, Ye W J, Zhang Z D, Song H W and Xuan L 2014 Acta Photon. Sin. 43 1231003
[11] Castles F, Morris S M, Terentjev E M and Coles H J 2010 Phys. Rev. Lett. 104 157801
[12] Kumar P and Krishnamurthy K S 2006 Liquid Cryst. 33 131
[13] Mermin N D 1979 Rev. Mod. Phys. 51 591
[14] Trebin H R 1982 Adv. Phys. 31 195
[15] Chaikin P M and Lubensky T C 1995 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[16] Kléman M 1983 Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Disordered Media (New York: Wiley)
[17] Kralj S and Virga E G 2001 J. Phys. A 34 829
[18] Kralj S, Rosso R and Virga E G 2010 Phys. Rev. E 81 021702
[19] Nehring J and Saupe A 1972 J. Chem. Soc. Faraday Trans. II 68 1
[20] Tian Y and Zhang Z D 2015 Liquid Cryst. 42 288
[21] Ryschenkow G and Kleman M 1976 J. Chem. Phys. 64 404
[22] Patel J S and Lee S D 1989 J. Appl. Phys. 66 1879
[23] Saupe A 1981 J. Chem. Phys. 75 5118
[24] Zhou X and Zhang Z D 2014 Liquid Cryst. 41 1219
[25] Zhou X and Zhang Z D 2013 Int. J. Mol. Sci. 14 24135
[26] Guzmán O, Abbott N L and De Pablo J J 2005 J. Chem. Phys. 122 184711
[27] Yang D K and Wu S H T 2006 Fundamentals of Liquid Crystal Devices (England: Wiley & Sons, Ltd.)
[1] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[2] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[3] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[4] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[5] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[6] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[7] Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission
Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇). Chin. Phys. B, 2020, 29(7): 074208.
[8] Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates
Xuyue Guo(郭旭岳), Jinzhan Zhong(钟进展), Peng Li(李鹏), Bingyan Wei(魏冰妍), Sheng Liu(刘圣), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(4): 040305.
[9] Interference effect on the liquid-crystal-based Stokes polarimeter
Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Zhi-Yong Zhang(张志勇), and Ying-Zi Sun(孙英姿). Chin. Phys. B, 2020, 29(12): 124211.
[10] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[11] Design of an augmented reality display based on polarization grating
Renjie Xia(夏人杰), Changshun Wang(王长顺), Yujia Pan(潘雨佳), Tianyu Chen(陈天宇), Ziyao Lyu(吕子瑶), Lili Sun(孙丽丽). Chin. Phys. B, 2019, 28(7): 074201.
[12] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[13] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[14] Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge
Hui-Ming Hao(郝慧明), Yao-Yao Liu(刘瑶瑶), Ping Zhang(张平), Ming-Lei Cai(蔡明雷), Xiao-Yan Wang(王晓燕), Ji-Liang Zhu(朱吉亮), Wen-Jiang Ye(叶文江). Chin. Phys. B, 2017, 26(8): 086102.
[15] Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface
Xiaolong Lu(逯晓龙), Ruixin Shi(史瑞新), Changchun Hao(郝长春), Huan Chen(陈欢), Lei Zhang(张蕾), Junhua Li(李俊花), Guoqing Xu(徐国庆), Runguang Sun(孙润广). Chin. Phys. B, 2016, 25(9): 090506.
No Suggested Reading articles found!