CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure |
Kaibiao Zhang(张开彪)1,2, Hong Zhang(张红)1,3,4, Xinlu Cheng(程新路)1 |
1. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2. School of Science, Sichuan University of Science and Engineering, Zigong 643000, China; 3. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China; 4. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China |
|
|
Abstract The graphene/hexagonal boron-nitride (h-BN) hybrid structure has emerged to extend the performance of graphene-based devices. Here, we investigate the tunable plasmon in one-dimensional h-BN/graphene/h-BN quantum-well structures. The analysis of optical response and field enhancement demonstrates that these systems exhibit a distinct quantum confinement effect for the collective oscillations. The intensity and frequency of the plasmon can be controlled by the barrier width and electrical doping. Moreover, the electron doping and the hole doping lead to very different results due to the asymmetric energy band. This graphene/h-BN hybrid structure may pave the way for future optoelectronic devices.
|
Received: 18 August 2015
Revised: 07 October 2015
Accepted manuscript online:
|
PACS:
|
71.45.Gm
|
(Exchange, correlation, dielectric and magnetic response functions, plasmons)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217) and the Scientific Research Fund of Sichuan University of Science and Engineering, China (Grant No. 2014PY07). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Kaibiao Zhang(张开彪), Hong Zhang(张红), Xinlu Cheng(程新路) Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure 2016 Chin. Phys. B 25 037104
|
[1] |
Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749
|
[2] |
Fei Z, Rodin A S, Andreev G O, Bao W, Mcleod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
|
[3] |
Yan B, Yang X, Fang J, Huang Y, Qin H and Qin S 2015 Chin. Phys. B 24 015203
|
[4] |
Vakil A and Engheta N 2011 Science 332 1291
|
[5] |
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
|
[6] |
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
|
[7] |
Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
|
[8] |
Vasic B, Isic G and Gajic R 2013 J. Appl. Phys. 113 013110
|
[9] |
Nikitin A Y, Guinea F and Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119
|
[10] |
Begliarbekov M, Sul O, Santanello J, Ai N, Zhang X, Yang E H and Strauf S 2011 Nano Lett. 11 1254
|
[11] |
Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J and Garc?a de Abajo F J 2013 ACS Nano 7 2388
|
[12] |
Wang W and Kinaret J M 2013 Phys. Rev. B 87 195424
|
[13] |
Christensen T, Wang W, Jauho A P, Wubs M and Mortensen N A 2014 Phys. Rev. B 90 241414
|
[14] |
Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y and Duan X 2011 Nat. Commun. 2 579
|
[15] |
Wang P, Zhang W, Liang O, Pantoja M, Katzer J, Schroeder T and Xie Y H 2012 ACS Nano 6 6244
|
[16] |
Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
|
[17] |
Fang Z, Liu Z, Wang Y, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[18] |
Chang C K, Kataria S, Kuo C C, Ganguly A, Wang B Y, Hwang J Y, Huang K J, Yang W H, Wang S B, Chuang C H, Chen M, Huang C I, Pong W F, Song K J, Chang S J, Guo J H, Tai Y, Tsujimoto M, Isoda S, Chen C W, Chen L C and Chen K H 2013 ACS Nano 7 1333
|
[19] |
Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F and Aiayan P M 2010 Nat. Mater. 9 430
|
[20] |
Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J and Ajayan P M 2013 Nat. Nanotechnol. 8 119
|
[21] |
Kim S M, Hsu A P, Araujo T, Lee Y H, Palacios T, Dresselhaus M, Idrobo J C, Kim K K and Kong J 2013 Nano Lett. 13 933
|
[22] |
Pruneda J M 2010 Phys. Rev. B 81 161409
|
[23] |
Sun Q, Dai Y, Ma Y, Wei W and Huang B 2015 RSC Adv. 5 33037
|
[24] |
Ding Y, Wang Y and Ni J 2009 Appl. Phys. Lett. 95 123105
|
[25] |
Zhang K, Yap F L, Li K, Ng C T, Li L J and Loh K P 2014 Adv. Funct. Mater. 24 731
|
[26] |
Seol G and Guo J 2011 Appl. Phys. Lett. 98 143107
|
[27] |
Pruneda J M 2010 Phys. Rev. B 81 161409(R)
|
[28] |
Bernardi M, Palummo M and Grossman1 J C 2012 Phys. Rev. Lett. 108 226805
|
[29] |
Xu B, Lu Y H, Feng Y P and Lin J Y 2010 J. Appl. Phys. 108 073711
|
[30] |
Shinde P P and Kumar V 2011 Phys. Rev. B 84 125401
|
[31] |
Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
|
[32] |
Yan J and Gao S 2007 Phys. Rev. Lett. 98 216602
|
[33] |
Zhang K and Zhang H 2014 J. Phys. Chem. C 118 635
|
[34] |
Yin H and Zhang H 2012 J. Appl. Phys. 111 103502
|
[35] |
Liu D and Zhang H 2011 Chin. Phys. B 20 097105
|
[36] |
Zhang H, Yin H, Zhang K and Lin J 2015 Acta Phys. Sin. 64 57300 (in Chinese)
|
[37] |
Troullier N and Martins J 1991 Phys. Rev. B 43 1993
|
[38] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[39] |
Yamijala S S R K C, Bandyopadhyay A and Pati S K 2013 J. Phys. Chem. C 117 23295
|
[40] |
Song P, Nordlander P and Gao S 2011 J. Chem. Phys. 134 074701
|
[41] |
Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L and Garcia de Abajo F J 2012 ACS Nano 6 431
|
[42] |
Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sanchez-Portal D and Garcí a de Abajo F J 2013 ACS Nano 7 3635
|
[43] |
Han W, Wang W H, Pi K, McCreary K M, Bao W, Li Y, Miao F, Lau C N and Kawakami R K 2009 Phys. Rev. Lett. 102 137205
|
[44] |
Huard B, Stander N, Sulpizio J A and Goldhaber-Gordon D 2008 Phys. Rev. B 78 121402(R)
|
[45] |
Kaloni T P, Joshi R P, Adhikari N P and Schwingenschlogl U 2014 Appl. Phys. Lett. 104 073116
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|