Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037103    DOI: 10.1088/1674-1056/25/3/037103
RAPID COMMUNICATION Prev   Next  

Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting

Yilin Wang(王义林)1, Li Huang(黄理)2, Liang Du(杜亮)3, Xi Dai(戴希)1
1. Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China;
3. Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
Abstract  

We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degenerate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting Δ. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.

Keywords:  orbital-selective Mott transition      doping      multi-band Hubbard model  
Received:  04 November 2015      Revised:  18 December 2015      Accepted manuscript online: 
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 2011CBA00108) and the National Basic Research Program of China (Grant No. 2013CB921700).

Corresponding Authors:  Xi Dai     E-mail:  daix@iphy.ac.cn

Cite this article: 

Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希) Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting 2016 Chin. Phys. B 25 037103

[1] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[2] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[3] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[4] Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M and Sigrist M 2002 Eur. Phys. J. B 25 191
[5] Koga A, Kawakami N, Rice T M and Sigrist M 2004 Phys. Rev. Lett. 92 216402
[6] Koga A, Kawakami N, Rice T M and Sigrist M 2005 Phys. Rev. B 72 045128
[7] de'Medici L, Georges A and Biermann S 2005 Phys. Rev. B 72 205124
[8] Ferrero M, Becca F, Fabrizio M and Capone M 2005 Phys. Rev. B 72 205126
[9] Arita R and Held K 2005 Phys. Rev. B 72 201102(R)
[10] Knecht C, Blümer N and van Dongen P G J 2005 Phys. Rev. B 72 081103(R)
[11] Liebsch A 2003 Phys. Rev. Lett. 91 226401
[12] Liebsch A 2004 Phys. Rev. B 70 165103
[13] Koga A, Kawakami N, Rice T M and Sigrist M 2005 Physica B 1366 359
[14] Inaba K, Koga A, Suga S and Kawakami N 2005 J. Phys. Soc. Jpn. 74 2393
[15] de'Medici L, Hassan S.R, Capone M and Dai X 2009 Phys. Rev. Lett. 102 126401
[16] Kita T, Ohashi T and Kawakami N 2011 Phys. Rev. B 84 195130
[17] Koga A and Inaba K 2007 J. Phys. Soc. Jpn. 76 094712
[18] Jakobi E, Blümer N and Dogen P 2009 Phys. Rev. B 80 115109
[19] Jakobi E, Blümer N and Dogen P 2013 Phys. Rev. B 87 205135
[20] Werner P and Millis A J 2007 Phys. Rev. Lett. 99 126405
[21] Werner P, Gull E, and Millis A J 2009 Phys. Rev. B 79 115119
[22] Rincón J, Adriana M, Gonzalo, A and Elbio D 2014 Phys. Rev. B 90 241105
[23] Rincón J, Adriana M, Gonzalo, A and Elbio D 2014 Phys. Rev. Lett. 112 106405
[24] Werner P, Comanac A, de'Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[25] Werner P and Millis A J 2006 Phys. Rev. B 74 155107
[26] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[27] Georges A, de'Medici L and Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137
[28] Huang L, Wang Y L, Meng Z Y, Du L, Werner P and Dai X 2015 Comput. Phys. Commun. 195 140
[29] Werner P, Gull E, Troyer M and Millis A J 2008 Phys. Rev. Lett. 101 166405
[30] Haule K and Kotliar G 2009 New J. Phys. 11 025021
[31] Toschi A, Arita R, Hansmann P, Sangiovanni G and Held K 2012 Phys. Rev. B 86 064411
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[7] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
No Suggested Reading articles found!