Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074208    DOI: 10.1088/1674-1056/25/7/074208

Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal

Rong-Guo Yang(杨荣国)1,2, Jing-jing Wang(王晶静)2, Jing Zhang(张静)1,2, Heng-Xin Sun(孙恒信)1,3
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
2 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China;
3 Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  Spatial quantum optics based on the high-order transverse mode is important for the super-resolution measurement and quantum image beyond the shot noise level. Quantum entanglement of the transverse plane Hermite-Gauss TEM01 mode has been demonstrated experimentally in this paper. Two squeezed TEM01 modes, which are generated by a pair of degenerate optical parametric amplifiers (DOPA) with the nonlinear crystals of periodically poled KTiOPO4, have been combined to produce TEM01 mode entanglement using a beam splitter. The 1.5 dB for the sum of amplitude and 1.2 dB for the difference of phase below shot-noise level is achieved with the measurement system of a Bell state detection.
Keywords:  Hermite-Gauss mode      entangled state      degenerate optical parametric amplifier  
Received:  22 December 2015      Revised:  15 March 2016      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504218 and 61108003) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021005-2).
Corresponding Authors:  Rong-Guo Yang     E-mail:

Cite this article: 

Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信) Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal 2016 Chin. Phys. B 25 074208

[1] McKenzie K, Grosse N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E and Lam P K 2004 Phys. Rev. Lett. 93 161105
[2] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2005 Phys. Rev. Lett. 95 211102
[3] He G Q, Zhu S W, Guo H B and Zeng G H 2008 Chin. Phys. B 17 1263
[4] Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[5] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[6] Josse V, Sabuncu M, Cerf N J, Leuchs G and Andersen U L 2006 Phys. Rev. Lett. 96 163602
[7] Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
[8] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[9] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C and Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese)
[10] Senior R J, Milford G N, Janousek J, Dunlop A E, Wagner K, Bachor H A, Ralph T C, Huntington E H and Harb C C 2007 Opt. Express 15 5310
[11] Yang R G, Zhang J, Zhai S Q, Liu K, Zhang J X and Gao J R 2013 J. Opt. Soc. Am. B 30 314
[12] Lassen M, Delaubert V, Janousek J, Wagner K, Bachor H A, Lam P K, Treps N, Buchhave P, Fabre C and Harb C C 2007 Phys. Rev. Lett. 98 083602
[13] Yang R G, Sun H X, Zhang J X and Gao J R 2011 Chin. Phys. B 20 060305
[14] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photonics 7 229
[15] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A and Lam P K 2003 Science 301 940
[16] Treps N, Andersen U, Buchler B, Lam P K, Bachor H and Fabre C 2002 Phys. Rev. Lett. 88 203601
[17] Treps N, Grosse N, Bowen W P, Hsu M T L, Fabre C, Bachor H A and Lam P K 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S664
[18] Li R, Zhai Z H, Zhao S J and Gao J R 2010 Acta Phys. Sin. 59 7724 (in Chinese)
[19] Fabre C, Fouet J B and Maitre A 2000 Opt. Lett. 25 76
[20] Delaubert V, Treps N, Fabre C, Bachor H A and Réfrégier P 2008 Europhys. Lett. 81 44001
[21] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A and Lam P K 2003 Science 301 940
[22] Sun H X, Liu Z L, Liu K, Yang R G, Zhang J X and Gao J R 2014 Chin. Phys. Lett. 31 084202
[23] Caves C M and Drummond P D 1994 Rev. Mod. Phys. 66 481
[1] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[2] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[3] Optical complex integration-transform for deriving complex fractional squeezing operator
Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(3): 030306.
[4] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[5] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[8] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[9] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[10] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[11] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[12] Hybrid entanglement concentration assisted with single coherent state
Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(3): 030302.
[13] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu (顾之雨), Qian Shang-Wu (钱尚武). Chin. Phys. B, 2015, 24(4): 040301.
[14] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[15] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
No Suggested Reading articles found!