CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals |
Cheng Yan (程岩)a, Hao Wei-Chang (郝维昌)a b, Li Wen-Xian (李文献)b c, Xu Huai-Zhe (许怀哲)a, Chen Rui (陈蕊)d, Dou Shi-Xue (窦士学)b |
a Department of Physics and Center of Materials Physics and Chemistry, Beihang University, Beijing 100191, China;
b Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW 2522, Australia;
c Solar Energy Technologies, School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, NSW 2751, Australia;
d State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China |
|
|
Abstract Zn1-xMnxO (x=0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and its X-ray absorption fine structure. It is found that the solubility of substitutional Mn in a ZnO lattice is very low, which is less than 0.4%. Mn ions first dissolve into the substitutional sites in the ZnO lattice, thereby forming Mn2+O4 tetrahedral coordination when x ≤ 0.001, then entering into the interstitial sites and forming Mn3+O6 octahedral coordination when x ≥ 0.005. All the samples exhibit paramagnetic behaviors at room temperature, and antiferromagnetic coupling can be observed below 100 K.
|
Received: 16 April 2013
Revised: 09 May 2013
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
61.72.sh
|
(Impurity distribution)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 013CB934001) and the National Natural Science Foundation of China (Grant No. 51272015). |
Corresponding Authors:
Hao Wei-Chang, Xu Huai-Zhe
E-mail: whao@buaa.edu.cn;hzxu@buaa.edu.cn
|
Cite this article:
Cheng Yan (程岩), Hao Wei-Chang (郝维昌), Li Wen-Xian (李文献), Xu Huai-Zhe (许怀哲), Chen Rui (陈蕊), Dou Shi-Xue (窦士学) The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals 2013 Chin. Phys. B 22 107501
|
[1] |
Erwin S C, Zu L, Haftel M I, Efros A L, Kennedy T A and Norris D J 2005 Nature 436 91
|
[2] |
Alivisatos A P 1996 Science 271 933
|
[3] |
Lommens P, Loncke F, Smet P F, Callens F, Poelman D, Vrielinck H and Hens Z 2007 Chem. Mater. 19 5576
|
[4] |
Wang X, Song F, Chen Q, Wang T, Wang J, Liu P, Shen M, Wan J, Wang G and Xu J B 2010 J. Am. Chem. Soc. 132 6492
|
[5] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[6] |
Teng X Y, Yu W, Yang L H, Hao Q Y, Zhang L, Xu H J, Liu C C and Fu G S 2007 Chin. Phys. Lett. 24 1073
|
[7] |
He Q B, Xu J Y, Li X H, Kamzin A and Kamzina L 2007 Chin. Phys. Lett. 24 3499
|
[8] |
Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S and Koinuma H 2001 Appl. Phys. Lett. 78 958
|
[9] |
Kundaliya D C, Ogale S B, Lofland S E, Dhar S, Metting C J, Shinde S R, Ma Z, Varughese B, Ramanujachary K V, Salamanca-Riba L and Venkatesan T 2004 Nat. Mater. 3 709
|
[10] |
García M A, Ruiz-González M L, Quesada A, Costa-Krämer J L, Fernández J F, Khatib S J, Wennberg A, Caballero A C, Martín-González M S, Villegas M, Briones F, González-Calbet J M and Hernando A 2005 Phys. Rev. Lett. 94 217206
|
[11] |
Lawes G, Risbud A S, Ramirez A P and Seshadri R 2005 Phys. Rev. B 71 045201
|
[12] |
Steven D C 2000 Los Alamos Sci. 26 422
|
[13] |
Smolentsev N, Soldatov A V, Smolentsev G and Wei S Q 2009 Solid State Commun. 149 1803
|
[14] |
Zhang L, Li J, Du Y, Wang J, Wei X, Zhou J, Cheng J, Chu W, Jiang Z, Huang Y, Yan C, Zhang S and Wu Z 2012 New J. Phys. 14 013033
|
[15] |
Schwartz D A, Norberg N S, Nguyen Q P, Parker J M and Gamelin D R 2003 J. Am. Chem. Soc. 125 13205
|
[16] |
Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A and Gamelin D R 2004 J. Am. Chem. Soc. 126 9387
|
[17] |
Riyadi S, Muafif, Nugroho A A, Rusydi A and Tjia M O 2007 J. Phys.: Condens. Matter 19 476214
|
[18] |
Lu Y, Lin Y, Xie T, Shi S, Fan H and Wang D 2012 Nanoscale 4 6393
|
[19] |
Beaulac R, Archer P I and Gamelin D R 2008 J. Solid State Chem. 181 1582
|
[20] |
Rao C N R and Deepak F L 2005 J. Mater. Chem. 15 573
|
[21] |
Mizokawa T and Fujimori A 1993 Phys. Rev. B 48 14150
|
[22] |
Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E M, Lorenz M and Grundmann M 2003 Appl. Phys. Lett. 83 1974
|
[23] |
Samanta K, Dussan S, Katiyar R S and Bhattacharya P 2007 Appl. Phys. Lett. 90 261903
|
[24] |
Cong C J, Liao L, Liu Q Y, Li J C and Zhang K L 2006 Nanotechnology 17 1520
|
[25] |
Han Y F, Ramesh K, Chen L, Widjaja E, Chilukoti S and Chen F 2007 J. Phys. Chem. C 111 2830
|
[26] |
Hu C C, Wu Y T and Chang K H 2008 Chem. Mater. 20 2890
|
[27] |
Martínez B, Sandiumenge F, Balcells L, Arbiol J, Sibieude F and Monty C 2005 Phys. Rev. B 72 165202
|
[28] |
Escudero R and Escamilla R 2011 Solid State Commun. 151 97
|
[29] |
Nagamiya T, Yosida K and Kubo R 1955 Adv. Phys. 4 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|