Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056101    DOI: 10.1088/1674-1056/19/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films

Lu Zhong-Lin(路忠林)a)b), Zou Wen-Qin(邹文琴)c), Xu Ming-Xiang (徐明祥)a), and Zhang Feng-Ming(张凤鸣)c)
a Department of Physics, Southeast University, Nanjing 210096, China; b Physics Department and Institute of Innovations and Advanced Studies (IIAS), National Cheng Kung University, Tainan 701, China; c Jiangsu Provincial Laboratory for Nanotechnology, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16 μB/Co2+) in the Zn0.95Co0.05O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65 μB/Co2+) at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.
Keywords:  Co-doped ZnO      diluted magnetic semiconductors      x-ray absorption fine structure      single crystalline thin films  
Received:  29 August 2009      Revised:  23 September 2009      Accepted manuscript online: 
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.50.Pp (Magnetic semiconductors)  
  78.70.Dm (X-ray absorption spectra)  
  68.55.A- (Nucleation and growth)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  73.61.Ga (II-VI semiconductors)  
Fund: Project partially supported by National Science Foundation of China (Grant No.~10804017), National Science Foundation of Jiangsu Province of China (Grant No.~BK2007118), Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070286037), Cyanine-Project Foundation of Jiangsu Province of China (Grant No.~1107020060), Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No.~1107020070) and New Century Excellent Talents in University (NCET-05-0452).

Cite this article: 

Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang (徐明祥), and Zhang Feng-Ming(张凤鸣) Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films 2010 Chin. Phys. B 19 056101

[1] Cho S, Ma J, Kim Y, Sun Y, Wong G K L and Ketterson J B 1999 Appl. Phys. Lett. 75 2761
[2] Cao H, Xu J Y, Seeling E W and Chang R P H 2000 Phys. Rev. Lett. 84 5584
[3] Tsukazaki A, Ohotmo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu Shigefusa F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[4] Xu H Y, Liu Y C, Mu R, Shao C L, Lu Y M, Shen D Z and Fan X W 2005 Appl. Phys. Lett. 86 123107
[5] \"{Ozg\"{Ur\"{U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Do\v{gan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[6] Janisch R, Gopal P and Spaldin N A 2005 J. Phys. Condens. Matter. 17 R657
[7] Dietl T, Ohno H, Matsukura F, Cubert J and Ferrand D 2000 Science 287 1019
[8] Wang Q, Sun Q, Jena P and Kawazoe Y 2004 Phys. Rev. B 70 052408
[9] Sato K and Katyama-Yoshida H 2002 Semicon. Sci. Technol. 17 367
[10] Peng X D, Zhu T and Wang F W 2009 Acta Phys. Sin. 58 3274 (in Chinese)
[11] Yan G Q, Xie K X, Mo Z R, Lu Z L, Zou W Q, Wang S, Yue F J, Wu D, Zhang F M and Du Y W 2009 Acta Phys. Sin. 58 1237 (in Chinese)
[12] Sati P, Deparis C, Morhain C, Sch\"{afer S and Stepanov A 2007 Phys. Rev. Lett. 98 137204
[13] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[14] Liu X C, Shi E W, Chen Z Z, Zhang H W, Zhang T and Song L X 2007 Chin. Phys. 16 1770
[15] Schwartz Dana A and Gamelin Daniel R 2004 Adv. Mater. 16 2115
[16] Hsu H S, Huang J C A, Huang Y H, Liao Y F, Lin M Z, Lee C H, Lee J F, Chen S F, Lai L Y and Liu C P 2006 Appl. Phys. Lett. 88 242507
[17] Cheng X W, Li X, Gao Y L, Yu Z, Long X and Liu Y 2009 Acta Phys. Sin. 58 2018 (in Chinese)
[18] Liu X C, Chen Z Z, Shi E W, Yan C F, Huang W, Song L X, Zhou K J, Cui M Q, He B and Wei S Q 2009 Acta Phys. Sin. 58 0498 (in Chinese)
[19] Peng X D, Zhu T, Wang F W, Huang W G and Cheng Z H 2009 Chin. Phys. B 18 2576
[20] Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X and Shi E W 2008 Chin. Phys. B 17 1371
[21] Schmidt-Mende L and MacManus-Driscoll J L 2007 Mater. Today 10 40
[22] Lu Z L, Hsu H S, Tzeng Y H and Huang J C A 2009 Appl. Phys. Lett. 94 152507
[23] Fons P, Iwata K, Yamada A, Matsubara, Niki S, Nakahara K, Tanabe T and Takasu H 2000 Appl. Phys. Lett. 77 1801
[24] Cao Q, Deng J X, Liu G L, Chen Y X, Yan S S and Mei L M 2007 Chin. Phys. Lett. 24 2951
[25] Pan F, Song C, Liu X J, Yang Y C and Zeng F 2008 Mater. Sci. Eng. R 62 1
[26] Heald S M, Kaspar T, Droubay T, Shutthanandan V and Chambers S 2009 Phys. Rev. B 79 075202
[27] Yin S, Xu M X, Yang L, Liu J F, R\"{osner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T and Hu T D 2006 Phys. Rev. B 73 224408
[28] MacManus-Driscoll J L, Khare N, Liu Y L and Vickers M E 2007 Adv. Mater. 19 2925
[29] Khare N, Kappers M J, Wei M, Blamire M G and MacManus-Driscoll J L 2006 Adv. Mater. 18 1449
[30] Kittilstved K R, Schwartz D A, Tuan A C, Heald S M, Chambers S A and Gamelin D R 2006 Phys. Rev. Lett. 97 037203
[31] Potashnik S J, Ku K C, Mahendiran R, Chun S H, Wang R F, Samarth N and Schiffer P 2002 Phys. Rev. B 66 12408
[1] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[2] Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛). Chin. Phys. B, 2019, 28(5): 056103.
[3] Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing
Yan Cheng(程岩), Wen-Xian Li(李文献), Wei-Chang Hao(郝维昌), Huai-Zhe Xu(许怀哲), Zhong-Fei Xu(徐忠菲), Li-Rong Zheng(郑离荣), Jing Zhang(张静),Shi-Xue Dou(窦士学), Tian-Min Wang(王天民). Chin. Phys. B, 2016, 25(1): 017301.
[4] Room-temperature ferromagnetism induced by Cu vacancies in Cux(Cu2O)1-x granular films
Xie Xin-Jian (解新建), Li Hao-Bo (李好博), Wang Wei-Chao (王卫超), Lu Feng (卢峰), Yu Hong-Yun (于红云), Wang Wei-Hua (王维华), Cheng Ya-Hui (程雅慧), Zheng Rong-Kun (郑荣坤), Liu Hui (刘晖). Chin. Phys. B, 2015, 24(9): 097504.
[5] Structure and chemical valence study of Srn+1RunO3n+1 (n=1, 2, ∞) series
Zheng Long (郑龙), Zhu Xiao-Qin (朱小芹), Sui Yong-Xing (眭永兴), Xue Jian-Zhong (薛建忠), Liu Bo (刘波), Pei Ming-Xu (裴明旭). Chin. Phys. B, 2015, 24(5): 056101.
[6] Defect-induced ferromagnetism in rutile TiO2:A first-principles study
Zhang Yong (张勇), Qi Yue-Ying (祁月盈), Hu Ya-Hua (胡亚华), Liang Pei (梁培). Chin. Phys. B, 2013, 22(12): 127101.
[7] The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals
Cheng Yan (程岩), Hao Wei-Chang (郝维昌), Li Wen-Xian (李文献), Xu Huai-Zhe (许怀哲), Chen Rui (陈蕊), Dou Shi-Xue (窦士学). Chin. Phys. B, 2013, 22(10): 107501.
[8] A theoretical study of the oxygen K-edge near-edge X-ray absorption ne structure of N2O/Ir(110)
Wu Tai-Quan(吴太权), Zhu Ping(朱萍), Wang Xin-Yan(王新燕), and Luo Hong-Lei (罗宏雷) . Chin. Phys. B, 2012, 21(7): 076801.
[9] A first-principles study of the magnetic properties in boron-doped ZnO
Xu Xiao-Guang(徐晓光), Yang Hai-Ling(杨海龄), Wu Yong(吴勇), Zhang De-Lin(张德林), and Jiang Yong(姜勇) . Chin. Phys. B, 2012, 21(4): 047504.
[10] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜). Chin. Phys. B, 2012, 21(12): 124205.
[11] Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y
N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. H. Saidi and E. K. Hlil . Chin. Phys. B, 2011, 20(8): 087504.
[12] Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films
Liu Xue-Chao(刘学超), Chen Zhi-Zhan(陈之战), Shi Er-Wei(施尔畏), Liao Da-Qian(廖达前), and Zhou Ke-Jin(周克谨). Chin. Phys. B, 2011, 20(3): 037501.
[13] Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO
Weng Zhen-Zhen(翁臻臻), Zhang Jian-Min(张健敏), Huang Zhi-Gao(黄志高), and Lin Wen-Xiong(林文雄) . Chin. Phys. B, 2011, 20(2): 027103.
[14] Paramagnetism in Cu-doped ZnO
Xu Qing-Yu(徐庆宇), Zheng Xiao-Hong(郑晓红), and Gong You-Pin(龚佑品). Chin. Phys. B, 2010, 19(7): 077501.
[15] Electron spin resonance investigation of the substitution of Fe3+ for Ti4+ ions in rutile TiO2 single crystal
Li Guo-Ke(李国科), Zhang Xiang-Qun(张向群), Wu Hong-Ye(吴鸿业), Huang Wan-Guo(黄万国), Jin Jin-Ling(靳金玲), Sun Young(孙阳), and Cheng Zhao-Hua(成昭华). Chin. Phys. B, 2009, 18(8): 3551-3554.
No Suggested Reading articles found!