Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114401    DOI: 10.1088/1674-1056/24/11/114401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR–PSO algorithm

Niu Chun-Yang (牛春洋)a, Qi Hong (齐宏)a, Huang Xing (黄兴)a, Ruan Li-Ming (阮立明)a, Wang Wei (王伟)b, Tan He-Ping (谈和平)a
a School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
b Civil Aviation University of China, Tianjin 300300, China
Abstract  A hybrid least-square QR decomposition (LSQR)-particle swarm optimization (LSQR-PSO) algorithm was developed to estimate the three-dimensional (3D) temperature distributions and absorption coefficients simultaneously. The outgoing radiative intensities at the boundary surface of the absorbing media were simulated by the line-of-sight (LOS) method, which served as the input for the inverse analysis. The retrieval results showed that the 3D temperature distributions of the participating media with known radiative properties could be retrieved accurately using the LSQR algorithm, even with noisy data. For the participating media with unknown radiative properties, the 3D temperature distributions and absorption coefficients could be retrieved accurately using the LSQR-PSO algorithm even with measurement errors. It was also found that the temperature field could be estimated more accurately than the absorption coefficients. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the selection of the detection direction and the angle between two detection directions was also analyzed.
Keywords:  LSQR-PSO      inverse problem      retrieval temperature field      line-of-sight method  
Received:  28 April 2015      Revised:  21 May 2015      Accepted manuscript online: 
PACS:  44.40.+a (Thermal radiation)  
  44.05.+e (Analytical and numerical techniques)  
  45.10.Db (Variational and optimization methods)  
Fund: Project supported by the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), the National Natural Science Foundation of China (Grant No. 51476043), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.
Corresponding Authors:  Qi Hong     E-mail:  qihong@hit.edu.cn

Cite this article: 

Niu Chun-Yang (牛春洋), Qi Hong (齐宏), Huang Xing (黄兴), Ruan Li-Ming (阮立明), Wang Wei (王伟), Tan He-Ping (谈和平) Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR–PSO algorithm 2015 Chin. Phys. B 24 114401

[1] Liu L H, Tan H P and Yu Q Z;1999 Numer. Heat Tr. a-Appl. 36 511
[2] Qi H, Ruan L M, Zhang H C, Wang Y M and Tan H P;2007 Int. J. Therm. Sci. 46 649
[3] Liu D, Wang F, Yan J H, Huang Q X, Chi Y and Cen K F;2008 Int. J. Heat Mass Trans. 51 3434
[4] Klose A D, Hielscher A H and Beuthan J 2000 Medical Imaging 2000: Image Processing, February 12, 2000, San Diego, CA, p. 1323
[5] Cheng Q, Zhang X Y, Wang Z C, Zhou H C and Shao S;2014 Heat Transf. Eng. 35 770
[6] Lou C and Zhou H C;2009 Numer. Heat Tr. a-Appl. 56 153
[7] Lou C and Zhou H C;2008 Numer. Heat Tr. b-Fund. 53 555
[8] Zhou H C, Lou C, Cheng Q, Jiang Z W, He J, Huang B Y, Pei Z L and Lu C X;2005 P. Combust. Inst. 30 1699
[9] He Z Z, Qi H, Yao Y C and Ruan L M;2014 J. Quant. Spectrosc. Ra. 149 117
[10] Wang F Q, Tan J Y, Shuai Y, Tan H P and Chu S X 2014 Int. J. Heat Mass Trans. 78 7
[11] Yuan Y, Huang X, Shuai Y and Mao Q J 2014 Math. Probl. Eng. 2014 767231
[12] Correia D P, Ferrao P and Caldeira-Pires A 2000 P. Combust. Inst. 28 431
[13] Qi H, Ruan L M, Shi M, An W and Tan H P 2008 J. Quant. Spectrosc. Ra. 109 476
[14] Zhou H C, Hou Y B, Chen D L and Zheng C G;2002 J. Quant. Spectrosc. Ra. 74 605
[15] Lou C, Li W H, Zhou H C and Salinas C T;2011 Int. J. Heat Mass Trans. 54 1
[16] Liu D, Wang F, Cen K F, Yan J H, Huang Q X and Chi Y;2008 Opt. Lett. 33 422
[17] Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Acta Phys. Sin. 57 4812 (in Chinese)
[18] Guo Z X and Kim K;20 03 Appl. Opt. 42 2897
[19] Guo Z X, Wan S, August D A, Ying J P, Dunn S M and Semmlow J L;2006 Comput. Biol. Med. 36 209
[20] Akamatsu M and Guo Z X 2013 Numer. Heat Tr. a-Appl. 63 327
[21] Zhang B, Qi H, Ren Y T, Sun S C and Ruan L M 2013 Int. J. Heat Mass Trans. 66 507
[22] Zhang B, Qi H, Ren Y T, Sun S C and Ruan L M;2014 J. Quant. Spectrosc. Ra. 133 351
[23] Zhang B, Qi H, Sun S C, Ruan LMand Tan H P 2014 Thermal Science
[24] McCormick N J 1992 Nucl. Sci. Eng. 112 185
[25] Liu L H 2000 Int. Commun. Heat Mass 27 635
[26] Lou C and Zhou H C;2007 Numer. Heat Tr. b-Fund. 51 275
[27] Cui M, Gao X W and Chen H G;2011 Int. J. Therm. Sci. 50 898
[28] Liu L H and Jiang J 2001 J. Quant. Spectrosc. Ra. 70 207
[29] Lou C, Zhou H C, Yu P F and Jiang Z W 2007 P. Combust. Inst. 31 2771
[30] Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F;2010 Int. J. Heat Mass Trans. 53 4474
[31] Liu D, Huang Q X, Wang F, Chi Y, Cen K F and Yan J H 2010 J. Heat Trans.-T. Asme. 132 061202
[32] Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2011 Acta Phys. Sin. 60 060701 (in Chinese)
[33] Wang F, Yan J H, Cen K F, Huang Q X, Liu D, Chi Y and Ni M J 2010 Fuel 89 202
[34] Snelling D R, Thomson K A, Smallwood G J, Gulder O L, Weckman E J and Fraser R A;2002 AIAA Journal 40 1789
[35] Tikhonov A N 1963 Soviet Math. Dokl. 4 1035
[36] Hansen P C;1990 SIAM Journal on Scientific and Statistical Computing 11 503
[37] Paige C C and Saunders M A 1982 AMC Trans. Math. 8 195
[38] Kennedy J and Eberhart R C 1995 Particle Swarm Optimization (IEEE: New York)
[39] Qi H, Wang D L, Wang S G and Ruan L M;2011 J. Quant. Spectrosc. Ra. 112 2507
[40] Liu F B;2012 Int. J. Heat Mass Trans. 55 2062
[41] Yuan Y A, Yi H L, Yong S A, Wang F Q and Tan H P;2010 J. Quant. Spectrosc. Ra. 111 2106
[42] Yuan Y, Yi H L, Shuai Y, Liu B and Tan H P;2011 Atmos. Environ. 45 4892
[43] Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C and Zhang F W;2014 Chin. Phys. B 23 026201
[44] Liu H H and Liu Y H;2012 Chin. Phys. B 21 026102
[45] Gao F, Li Z Q and Tong H Q;2008 Chin. Phys. B 17 1196
[1] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[2] Reconstruction of dynamic structures of experimental setups based on measurable experimental data only
Tian-Yu Chen(陈天宇), Yang Chen(陈阳), Hu-Jiang Yang(杨胡江), Jing-Hua Xiao(肖井华), Gang Hu(胡岗). Chin. Phys. B, 2018, 27(3): 030503.
[3] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[4] Apparent directional spectral emissivity determination of semitransparent materials
Chun-Yang Niu(牛春洋), Hong Qi(齐宏), Ya-Tao Ren(任亚涛), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(4): 047801.
[5] Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation
Yao-Bin Qiao(乔要宾), Hong Qi(齐宏), Fang-Zhou Zhao(赵方舟), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(12): 120201.
[6] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
[7] An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction
Hu Shu-Juan (胡淑娟), Qiu Chun-Yu (邱春雨), Zhang Li-Yun (张利云), Huang Qi-Can (黄启灿), Yu Hai-Peng (于海鹏), Chou Ji-Fan (丑纪范). Chin. Phys. B, 2014, 23(8): 089201.
[8] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[9] A Compton scattering image reconstruction algorithm based on total variation minimization
Li Shou-Peng (李守鹏), Wang Lin-Yuan (王林元), Yan Bin (闫镔), Li Lei (李磊), Liu Yong-Jun (刘拥军). Chin. Phys. B, 2012, 21(10): 108703.
[10] An inverse problem in analytical dynamics
Li Guang-Cheng(李广成) and Mei-Feng-Xiang(梅凤翔). Chin. Phys. B, 2006, 15(8): 1669-1671.
[11] Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints
Zhang Hong-Bin (张宏彬), Gu Shu-Long (顾书龙). Chin. Phys. B, 2002, 11(8): 765-770.
[12] Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy
Gao Wei-Min (高伟民), Christ Glorieux, Walter Lauriks, Jan Thoen. Chin. Phys. B, 2002, 11(2): 132-138.
No Suggested Reading articles found!