ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers |
Ya Wen(温雅), Zhen Fan(范震), Lin-Hao Shang(尚林浩), Guang-Yong Jin(金光勇), Wang Chao(王超), Xin-Yu Chen(陈薪羽), and Chun-Ting Wu(吴春婷)† |
1 Jilin Key Laboratory of Solid Laser Technology and Application, College of Science, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract We report pulsed laser diode (LD) end-pumped acoustic Q-switched Tm:YAG laser, Tm:LuAG laser, and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG, Tm:LuAG, and Tm:LuYAG are analyzed. The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately, and is compared with Tm:YAG laser. Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other. When the repetition frequency is 100 Hz, the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ, pulse width of 126.7 ns, and the center wavelength of 2013.36 nm, and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ, pulse width of 252.4 ns, and the center wavelength of 2023.65 nm, and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5% and 11.85%, the center wavelengths of 2017.89 nm and 2027.11 nm, respectively, while the pump sources are 785-nm and 788-nm pulsed LDs, respectively.
|
Received: 04 September 2020
Revised: 20 October 2020
Accepted manuscript online: 13 November 2020
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974060 and U19A2077). |
Corresponding Authors:
†Corresponding author. E-mail: bigsnow1@126.com
|
Cite this article:
Ya Wen(温雅), Zhen Fan(范震), Lin-Hao Shang(尚林浩), Guang-Yong Jin(金光勇), Wang Chao(王超), Xin-Yu Chen(陈薪羽), and Chun-Ting Wu(吴春婷) Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers 2021 Chin. Phys. B 30 034206
|
1 Liu X Y, Li X W, Zhao S Z, Yang K J, Guo L, Li T, Qiao W C, Li M, Zhang B T, He J L, Zheng L H, Su L B and Xu J 2019 Chin. Opt. Lett. 17 091401 2 Liu X, Huang H T, Zhu H Y, Shen D Y, Zhang J and Tang D Y 2015 Chin. Opt. Lett. 13 061404 3 Liu X L, Huang H T, Shen D Y, Liu X, Zhang J and Tang D Y 2014 Chin. Opt. Lett. 12 S21404 4 Xie X B, Zhu X L, Li S G, Ma X H, Chen X, Sun Y G, Zang H G, Liu J Q and Chen W B 2017 Chin. Opt. Lett. 15 091902 5 Dai T Y, Deng Y, Ju Y L, Duan X M, Yao B Q and Wang Y S 2014 Chin. Phys. Lett. 31 084203 6 Yao B Q, Yu X, Ju Y L, Liu W B, Jiang B X and Pan Y B 2013 Chin. Phys. Lett. 30 024210 7 Ma Q L, Zong N, Xie S Y, Yang F, Guo Y D, Xu J L, Bo Y, Peng Q J, Cui D F and Xu Z Y 2009 Chin. Phys. Lett. 26 124211 8 Yao B Q, Ke L, Duan X M, Li G, Yang X T, Ju Y L and Wang Y Z 2009 Phys. Lett. 8 563 9 Lisiecki R, Solarz P, Dominiak-Dzik G and Ryba-Romanowski W 2006 Phys. Rev. 74 035103 10 Yu J R, Singh U N, Barnes N P and Petros M 1998 Opt. Lett. 10 780 11 Mahalingam V, Samanta T and Parveen A E 2018 J. Matem. C 10 1039 12 Suni P J M and Henderson S W 1991 Opt. Lett. 16 817 13 Pinto J F, Esterowitz L and Rosenblatt G H 1992 Opt. Lett. 17 731 14 Kmetec J D, Kubo T S, Kane T J and Grund C J 1994 Opt. Lett. 3 186 15 Kuwano Y, Suda K, Ishizawa N and Yamada T 2004 J Cryst. Growth 1 159 16 Sun M, Long J Y, Li X H, Liu Y, Ma H F, An Y, Hu X H, Wang Y S, Li C and Shen D Y 2012 Laser Phys. Lett. 8 553 17 Zhao Y G, Zhou W, Xu X D and Shen D Y 2016 Opt. Mater. 62 701 18 Zhang Q L, Feng B H, Zhang D X, Fu P M, Zhao Z W, Deng P H, Xu J, Xu Q D, Wang Y G and Ma X Y 2004 Opt. Commun. 232 353 19 Liu X, Huang H T, Zhu H Y, Shen D Y, Zhang J and Tang D Y 2015 Chin. Opt. Lett. 13 061404 20 Buryy O A, Sugak D Y, Ubizskii S B, Izhnin I I, Vakiv M M and Solskii I M 2007 Appl. Phys B-Lasers O 3 433 21 Scholle K, Heumann E and Huber G 2004 Laser Phys. Lett. 1 285 22 Li Y F, Wang Y Z and Ju Y L 2008 Laser Phys. 6 722 23 Eichhner W 2008 Appl. Phys. B 93 269 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|