Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100503    DOI: 10.1088/1674-1056/24/10/100503
GENERAL Prev   Next  

Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach

Wei Wei (魏伟)
School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
Abstract  

In this paper, we consider the synchronization of chaotic Hindmarsh Rose (HR) neurons via a scalar control input. Chaotic HR neurons coupled with a gap junction are taken into consideration, and an active compensation mechanism-based adaptive control is employed to realize the synchronization of two HR neurons. As such an adaptive control is utilized, an accurate model of the system is of no necessity. Asymptotical synchronization of two HR neurons is guaranteed by theoretical results. Numerical results are also provided to confirm the proposed synchronization approach.

Keywords:  synchronization      Hindmarsh Rose neuron      chaos      adaptive control  
Received:  02 March 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: 

Project supported by the Beijing Natural Science Foundation, China (Grant No. 4132005), the National Natural Science Foundation of China (Grant No. 61403006), the Importation and Development of High-Caliber Talent Project of Beijing Municipal Institutions, China (Grant No. YETP1449), and the Project of Scientific and Technological Innovation Platform , China (Grant No. PXM2015_014213_000063).

Corresponding Authors:  Wei Wei     E-mail:  weiweizdh@126.com

Cite this article: 

Wei Wei (魏伟) Synchronization of coupled chaotic Hindmarsh Rose neurons: An adaptive approach 2015 Chin. Phys. B 24 100503

[1] Terry J R, Thornburg K S and DeShazer D J, et al. 1999 Phys. Rev. E 59 4036
[2] Yang X S and Cao J D 2010 Appl. Math. Model. 34 3631
[3] Chen G R and Dong X N 1998 From Chaos to Order – Methodologies, Perspectives and Applications (Singapore: World Scientific)
[4] Meister M, Wong R O, Baylor D A and Shatz C J 1991 Science 252 939
[5] Kreiter A K and Singer W 1996 J. Neurosci. 16 2381
[6] Che Y Q, Wang J, Tsang K M and Chan W L 2010 Nonlinear Anal. Real World Appl. 11 1096
[7] Shuai J W and Durand D M 1999 Phys. Lett. A 264 289
[8] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[9] FitzhHugh R 1960 J. Gen. Physiol. 43 867
[10] Hindmarsh J L and Rose R M 1984 Proc. R. Soc. Lond. Ser. B 221 87
[11] Chay T R 1985 Physica D 16 233
[12] Morris C and Lecar H 1981 Biophys. J. 35 193
[13] Shilnikov A, Calabrese R L and Cymbalyuk G 2005 Phys. Rev. E 71 056214
[14] Doiron B, Laing C and Longtin A 2002 J. Comput. Neurosci. 12 5
[15] Elson R C, Selverston A I, Huerta R, et al. 1998 Phys. Rev. Lett. 81 5692
[16] Casado J M 2003 Phys. Lett. A 310 400
[17] Ostojic S, Brunel N and Hakim V 2009 J. Comput. Neurosci. 26 369
[18] Wang J, Che Y Q, Zhou S S and Deng B 2009 Chaos, Solitons and Fractals 39 1335
[19] Li H Y, Wong Y K, Chan W L and Tsang K M 2010 Neurocomputing 74 230
[20] Luo R Z and Zhang C H 2015 Chin. Phys. B 24 030503
[21] Yang J, Chen Y T and Zhu F L 2015 Neurocomputing 167 587
[22] Sun L, Wang J and Deng B 2009 Chaos, Solitons and Fractals 40 1213
[23] Rehan M, Hong K S and Aqil M 2011 Neurocomputing 74 3296
[24] Aqil M, Hong K S and Jeong M Y 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1615
[25] Che Y Q, Wang J, Tsang K M and Chan W L 2010 Nonlinear Anal. RWA 11 1096
[26] Nguyen L H and Hong K S 2013 Appl. Math. Model. 37 2460
[27] Dalibor H 2013 Neural Networks 40 73
[28] Djeundam D S R, Yamapi R, Filatrella R and Kofane T C 2015 Commun. Nonlinear Sci. Numer. Simul. 22 545
[29] Isidori A 1995 Nonlinear Control Systems (Berlin: Springer Verlag)
[30] Tornambé A and Valigi P 1994 ASME Journal of Dynamic Systems, Measurement and Control 116 293
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[7] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[8] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[9] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[12] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[13] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[14] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[15] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
No Suggested Reading articles found!