Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098701    DOI: 10.1088/1674-1056/24/9/098701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-power TM01 millimeter wave pulse sensor in circular waveguide

Wang Guang-Qiang (王光强)a b, Zhu Xiang-Qin (朱湘琴)a, Chen Zai-Gao (陈再高)a, Wang Xue-Feng (王雪锋)a b, Zhang Li-Jun (张黎军)a b
a Northwest Institute of Nuclear Technology, Xi'an 710024, China;
b Science and Technology on High Power Microwave Laboratory, Xi'an 710024, China
Abstract  By investigating the interaction of an n-type silicon sample with the TM01 mode millimeter wave in a circular waveguide, a viable high-power TM01 millimeter wave sensor is proposed. Based on the hot electron effect, the silicon sample serving as a sensing element (SE) and appropriately mounted on the inner wall of the circular waveguide is devoted to the on-line measurement of a high-power millimeter wave pulse. A three-dimensional parallel finite-difference time-domain method is applied to simulate the wave propagation within the measuring structure. The transverse electric field distribution, the dependences of the frequency response of the voltage standing-wave ratio (VSWR) in the circular waveguide, and the average electric field amplitude within the SE on the electrophysical parameters of the SE are calculated and analyzed in the frequency range of 300-400 GHz. As a result, the optimal dimensions and specific resistance of the SE are obtained, which provide a VSWR of no more than 2.0, a relative sensitivity around 0.0046 kW-1 fluctuating within ± 17.3%, and a maximum enduring power of about 4.3 MW.
Keywords:  circular waveguide      high-power millimeter wave      on-line measurement  
Received:  31 January 2015      Revised:  04 April 2015      Accepted manuscript online: 
PACS:  87.50.U-  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
Corresponding Authors:  Wang Guang-Qiang     E-mail:  wangguangqiang@nint.ac.cn

Cite this article: 

Wang Guang-Qiang (王光强), Zhu Xiang-Qin (朱湘琴), Chen Zai-Gao (陈再高), Wang Xue-Feng (王雪锋), Zhang Li-Jun (张黎军) High-power TM01 millimeter wave pulse sensor in circular waveguide 2015 Chin. Phys. B 24 098701

[1] Barker R J, Booske J H, Luhmann N C and Nusinovich G S 2004 Modern Microwave and Millimeter-Wave Power Electronics (Piscataway: IEEE Press)
[2] Booske J H 2008 Phys. Plasmas 15 055502
[3] Bratman V L, Glyavin M, Idehara T, Kalynov Y, Luchinin A, Manuilov V, Mitsudo S, Ogawa I, Saito I, Tatematsu Y and Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36
[4] Fu W J, Yang Y, Li X Y Yuan X S and Liu S G 2011 Chin. Sci. Bull. 56 3572
[5] Chen Z G, Wang J G and Wang Y 2014 Chin. Phys. B 23 108401
[6] Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D and Rostov V V 1987 IEEE Trans. Plasma Sci. 15 2
[7] Gao X, Yang Z Q, Qi L M, Lan F, Shi Z J, Li D Z and Liang Z 2009 Chin. Phys. B 18 2452
[8] Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S and Lu X C 2013 Phys. Plasmas 20 043105
[9] Min S H, Kwon O J, Sattorov M A So J K, Park S H, Baek I K, Choi D H, Shin Y M and Park G S 2011 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), Houston, TX
[10] Bratman V L, Fedotov A E, Makhalov P B and Manuilov V N 2014 IEEE Trans. Electron Dev. 61 1795
[11] Wang G Q, Wang J G, Li X Z, Tong C J and Wang X F 2011 J. Phys.: Conf. Ser. 276 012221
[12] Kancleris Ž, Šlekas G, Tamošiūnas V and Tamošiūnienė M 2009 PIER 92 267
[13] Kancleris Ž, Šlekas G, Tamošiūnas V and Tamošiūnienė M 2010 IET Microw. Antennas Propag. 4 771
[14] Wang G Q, Wang J G, Tong C J, Li X Z and Wang X F 2011 Acta Phys. Sin. 60 030702 (in Chinese)
[15] Wang G Q, Wang J G, Tong C J, Wang X F, Li S and Lu X C 2013 High Power Laser and Particle Beams 25 2959 (in Chinese)
[16] Wang X F, Wang J G, Wang G Q, Li S and Xiong Z F 2014 Chin. Phys. B 23 058701
[17] Seeger K 1973 Semiconductor Physics (Berlin: Springer-Verlag)
[18] Taflove A 1995 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Norwood: Actech House)
[19] Wang J G, Wang Y and Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
[20] Li S, Wang J G, Tong C J, Wang G Q, Wang X F and Lu X C 2013 Acta Phys. Sin. 62 120703 (in Chinese)
[21] Wang G Q, Wang J G, Li S, Wang X F, Lu X C and Song Z M 2015 Acta Phys. Sin. 64 050703 (in Chinese)
[22] Vicente C, Mattes M, Wolk D, Hartnagel H L, Mosig J R and Raboso D 2006 27th International Symposium on Power Modulator, Arlington, VA, pp. 22-27
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[3] Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation
Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 108701.
[4] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[5] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[6] Smith-Purcell radiation improved by multi-grating structure
Jing Shu(舒靖), Ping Zhang(张平), Man Liang(梁满), Sheng-Peng Yang(杨生鹏), Shao-Meng Wang(王少萌), and Yu-Bin Gong(宫玉彬). Chin. Phys. B, 2022, 31(4): 044103.
[7] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[8] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[9] Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2021, 30(11): 118702.
[10] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[11] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[12] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[13] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[14] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[15] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
No Suggested Reading articles found!