Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 093302    DOI: 10.1088/1674-1056/24/9/093302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical approach to the study of vibrational effects on strong field ionization of molecules with alignment-dependent tunneling ionization rates

Zhang Mei-Xia (张美霞)a b c, Yan Bing (闫冰)a b, Yang Yu-Jun (杨玉军)a b, Luo Si-Zuo (罗嗣佐)a b, Zhu Rui-Han (朱瑞晗)a b d, Yang Xue (杨雪)a b e, Ding Da-Jun (丁大军)a b
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China;
c College of Physics, Liaoning University, Shenyang 110036, China;
d School of Science, Changchun University of Science and Technology, Changchun 130012, China;
e College of Science, Jilin Institute of Chemical Technology, Jilin 130012, China
Abstract  The tunneling ionization rates of vibrationally excited N2 molecules at the ground electronic state are calculated using molecular orbital Ammosov-Delone-Krainov theory considering R-dependence. The results show that molecular alignment significantly affects the ionization rate, as the rate is mainly determined by the electron density distribution of the highest occupied molecular orbital. The present work indicates that the ratios of alignment-dependent rates of different vibrational levels to that of the vibrational ground level increase for the aligned N2 at the angle θ= 0°, and suggests that the alignment-dependent tunneling ionization rates can be used as a diagnostics for the influence of vibrational excitation on the strong field ionization of molecules.
Keywords:  vibration      alignment-dependent ionization rate      tunneling ionization theory  
Received:  13 February 2015      Revised:  02 April 2015      Accepted manuscript online: 
PACS:  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11034003 and 11127403).
Corresponding Authors:  Ding Da-Jun     E-mail:  dajund@jlu.edu.cn

Cite this article: 

Zhang Mei-Xia (张美霞), Yan Bing (闫冰), Yang Yu-Jun (杨玉军), Luo Si-Zuo (罗嗣佐), Zhu Rui-Han (朱瑞晗), Yang Xue (杨雪), Ding Da-Jun (丁大军) Theoretical approach to the study of vibrational effects on strong field ionization of molecules with alignment-dependent tunneling ionization rates 2015 Chin. Phys. B 24 093302

[1] Telnov D A and Chu S I 2007 Phys. Rev. A 76 043412
[2] Kvaran Á, Wang H S and Long J M 2013 Acta Phys. Sin. 62 163302 (in Chinese)
[3] Wang C C, Tian Y Y, Luo S Z, Roeterdink W G, Yang Y J, Ding D J, Okunishi M, Prümper G, Shimada K, Ueda K and Zhu R H 2014 Phys. Rev. A 90 023405
[4] Tong X M, Zhao Z X and Lin C D 2002 Phys. Rev. A 66 033402
[5] Urbain X, Fabre B, Staicu-Casagrande E M, Ruette N D, Andrianarijaona V M, Jureta J, Posthumus J H, Baldit E and Cornaggia C 2004 Phys. Rev. Lett. 92 163004
[6] Chu X and McIntyre M 2011 Phys. Rev. A 83 013409
[7] Tolstikhin O I, Wörner H J and Morishita T 2013 Phys. Rev. A 87 041401
[8] Guo J, Ge X L, Zhong H Y, Zhao X, Zhang M X, Jiang Y F and Liu X S 2014 Phys. Rev. A 90 053410
[9] Ammosov M V, Delone N B, and Krainov V P 1986 Sov. Phys. JETP 64 1191
[10] Wang Q, Mineo H, Wu D, Jin M X, Chin C H, Teranishi Y, Chao S D, Ding D J and Lin S H 2009 Laser Phys. 19 1671
[11] Zhang B and Zhao Z X 2010 Chin. Phys. Lett. 27 043301
[12] Mishima K, Nagaya K, Hayashi M and Lin S H 2005 J. Chem. Phys. 122 104312
[13] Wang Q, Wu D, Jin M X, Liu F C, Hu F, Cheng X H, Liu H, Hu Z, Ding D J, Mineo H, Dyakov Y. A, Mebel A M, Chao S D and Lin S H 2008 J. Chem. Phys. 129 204302
[14] Zhang B, Yuan J M and Zhao Z X 2012 Phys. Rev. A 85 033421
[15] Miao X Y and Shi H T 2013 Chin. Phys. Lett. 30 113301
[16] Chu X 2010 Phys. Rev. A 82 023407
[17] Saenz A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4365
[18] Brichta J P, Liu W K, Zaidi A A, Trottier A and Sanderson J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3769
[19] Litvinyuk I V, Kevin F Lee, Dooley P W, Rayner D M, Villeneuve D M and Corkum P B 2003 Phys. Rev. Lett. 90 233003
[20] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (University of Waterloo Chemical Physics Research Report CP-663)
[21] Kjeldsen T K and Madsen L B 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2033
[22] Zhao S F, Jin C, Le A T, Jiang T F and Lin C D 2010 Phys. Rev. A 81 033423
[23] Zhao S F, Jin C, Le A T, Jiang T F and Lin C D 2009 Phys. Rev. A 80 051402
[24] Murrell J N and Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 70 1552
[25] Rosen B 1970 Spectroscopic Data Relative to Diatomic Molecules International Tables of Selected Constants 17
[26] Trickl T, Cromwell E F, Lee Y T and Kung A H 1989 J. Chem. Phys. 91 6006
[27] Gallup G A and Fabrikant Ilya I 2010 Phys. Rev. A 81 033417
[28] Zhang B and Zhao Z X 2010 Phys. Rev. A 82 035401
[29] Guo C, Li M, Nibarger P and Gibson G N 1998 Phys. Rev. A 58 R4271
[30] Schmidt M W 1993 J. Comput. Chem. 14 1347
[31] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[32] Pavičić D, Lee K F, Rayner D M, Corkum P B and Villeneuve D M 2007 Phys. Rev. Lett. 98 243001
[33] Zhao S F, Xu J, Jin C, Le A T and Lin C D 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035601
[1] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[2] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[3] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[4] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[7] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[8] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[9] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[10] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[11] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[12] Michelson laser interferometer-based vibration noise contribution measurement method for cold atom interferometry gravimeter
Ning Zhang(张宁), Qingqing Hu(胡青青), Qian Wang(王倩), Qingchen Ji(姬清晨), Weijing Zhao(赵伟靖), Rong Wei(魏荣), Yuzhu Wang(王育竹). Chin. Phys. B, 2020, 29(7): 070601.
[13] Vibrational effects on electron momentum distributionsof outer valence orbitals of benzene
Yu Zhang(张钰), Shanshan Niu(牛珊珊), Yaguo Tang(唐亚国), Yichun Wang(王忆纯), Xu Shan(单旭), Xiangjun Chen(陈向军). Chin. Phys. B, 2020, 29(2): 023402.
[14] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[15] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
No Suggested Reading articles found!