Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084212    DOI: 10.1088/1674-1056/24/8/084212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber

Li Sha (李莎)a, Wang Jian-Ping (王建萍)a, Kang Zhe (康哲)b, Yu Chong-Xiu (余重秀)b
a School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China;
b State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Postsand Telecommunications (BUPT), Beijing 100876, China
Abstract  

In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift (SSFS) and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber (PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF (6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber (DIF) is replaced by a 6/8-PCF in spectral compression module.

Keywords:  all-optical analog-to-digital conversion      soliton self-frequency shift      spectral compression      photonic crystal fiber  
Received:  08 January 2015      Revised:  10 February 2015      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.70.Mp (Nonlinear optical crystals)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Corresponding Authors:  Li Sha     E-mail:  shalee@ustb.edu.cn

Cite this article: 

Li Sha (李莎), Wang Jian-Ping (王建萍), Kang Zhe (康哲), Yu Chong-Xiu (余重秀) Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber 2015 Chin. Phys. B 24 084212

[1] Khilo A, Spector S J and Grein M E 2012 Opt. Express 20 4454
[2] Kang Z, Yuan J H and Li S 2013 Chin. Phy. B 22 014211
[3] Wang E L, Jiang H M and Xie K 2014 Acta Phys. Sin. 63 134210 (in Chinese)
[4] Xu K, Niu J, Dai Y T, Sun X Q, Dai J, Wu J and Lin J T 2011 Appl. Opt. 50 1995
[5] Valley G C 2007 Opt. Express 15 1955
[6] Kang Z, Wu Q and Tian Y 2014 25th IET Irish Signals & Systems Conference m 2014 and 2014 China–Ireland International Conference on Information and Communications Technologies, June 26–27, 2014, Limerick, Ireland, p. 331
[7] Yoshiya Sato, Yoshinori Tanaka, Jeremy Upham, Yasushi Takahashi and Susumu Noda 2012 Nat. Photon. 6 56
[8] Konishi T, Takahashi K, Matsui H and Satoh T 2012 International Conference on Transparent Optical Networks, July 2, 2012, Coventry, UK, p. 1
[9] Agrawal G P 2007 Nonlinear Fiber Optics (Salt Lake City: Academic Press)
[10] Gordon J P 1986 Opt. Lett. 11 662
[11] Cheng X P, Tang X Y and Lou S Y 2014 Chin. Phys. Lett. 31 070201
[12] Alexander Podlipensky, Przemyslaw Szarniak, Nicolas Joly, Chirs Poulton and Philip St. Russell 2007 Optical Fiber Communication Conference, March 25, 2007, Anaheim, California, USA, p. OTuC4
[13] Ravi Pant, Alexander C Judge, Eric C Magi, Boris T Kuhlmey, Martijn de Sterke and Renjamin J Eggleton 2010 J. Opt. Soc. 27 1894
[14] Aleksandr A. Lanin, Andrei B Fedotov and Aleksei M Zheltikov 2012 Opt. Lett. 37 3618
[15] Yuan J H and Sang X Z 2014 Photon. Technol. Lett. 26 2209
[16] Liu L, Kang Z and Li Q 2014 Appl. Phys. Lett. 105 181113
[17] Li H P, Zhang X J, Liao J K, Tang X G, Liu Y and Liu Y Z 2009 Proc. SPIE 7630, Passive Components and Fiber-based Devices VI, 76301I (December 1, 2009)
[18] Adrian H Quarterman, Lucy E Hooper, Peter J Mosley and Keith G Wilcox 2014 Opt. Express 22 12096
[19] Verhoef A J, Andersen T V and Flory T 2013 Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Corference on International Quantum Electronics, IEEE, p. 1
[20] Yuan J H, Sang X Z and Yu C X 2012 Photon. Technol. Lett. 24 670
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[8] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[9] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[10] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[11] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[12] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[13] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[14] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
[15] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
No Suggested Reading articles found!